$\mathit CP$ AND $\mathit T$ VIOLATION PARAMETERS

Measured values of the triple-product asymmetry parameters, odd under time-reversal, are defined as ${{\mathit A}}_{c(s)}({{\mathit \Lambda}}/{{\mathit \phi}}$) = (${{\mathit N}}{}^{+}_{c(s)}$ $−$ ${{\mathit N}}{}^{−}_{c(s)}$) $/$ (sum) where ${{\mathit N}}{}^{+}_{c(s)}$, ${{\mathit N}}{}^{−}_{c(s)}$ are the number of ${{\mathit \Lambda}}$ or ${{\mathit \phi}}$ candidates for which the cos(${{\mathit \Phi}}$) and sin(${{\mathit \Phi}}$) observables are positive and negative, respectively. Angles cos(${{\mathit \Phi}}$) and sin(${{\mathit \Phi}}$) are defined as in LEITNER 2007 .

a$_{CP}$( ${{\mathit \Lambda}_{{{b}}}^{0}}$ $\rightarrow$ ${{\mathit p}}{{\mathit K}^{-}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ )

INSPIRE  
Observable calculated as half of the difference between triple products for ${{\mathit \Lambda}_{{{b}}}^{0}}$ and ${{\overline{\mathit \Lambda}}_{{{b}}}^{0}}$, which is sensitive to $\mathit CP$ violation.
VALUE (%) DOCUMENT ID TECN  COMMENT
$1.12$ $\pm1.51$ $\pm0.32$ 1
AAIJ
2018AG
LHCB ${{\mathit p}}{{\mathit p}}$ at 7, 8 TeV
1  Measured over full phase space of the decay.
Conservation Laws:
$\mathit CP$ INVARIANCE
References:
AAIJ 2018AG
JHEP 1808 039 Search for CP violation using triple product asymmetries in $\Lambda^{0}_{b}\to pK^{-}\pi^{+}\pi^{-}$, $\Lambda^{0}_{b}\to pK^{-}K^{+}K^{-}$ and $\Xi^{0}_{b}\to pK^{-}K^{-}\pi^{+}$ decays