$\mathit CP$ VIOLATION

$\mathit A_{CP}$ is defined as
${B( {{\mathit B}^{-}} \rightarrow {{\overline{\mathit f}}} )–B( {{\mathit B}^{+}} \rightarrow {{\mathit f}} )\over B( {{\mathit B}^{-}} \rightarrow {{\overline{\mathit f}}} )+B( {{\mathit B}^{+}} \rightarrow {{\mathit f}} )}$,
the $\mathit CP$-violation charge asymmetry of exclusive ${{\mathit B}^{-}}$ and ${{\mathit B}^{+}}$ decay.

$\mathit A_{CP}$( ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit D}^{*+}}{{\overline{\mathit D}}^{*0}}$ )

INSPIRE   PDGID:
S041AS1
VALUE DOCUMENT ID TECN  COMMENT
$-0.15$ $\pm0.11$ $\pm0.02$
AUBERT,B
2006A
BABR ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \Upsilon}{(4S)}}$
Conservation Laws:
$\mathit CP$ INVARIANCE
References:
AUBERT,B 2006A
PR D73 112004 Measurement of Branching Fractions and $\mathit CP$-Violating Charge Asymmetries for ${{\mathit B}}$-Meson Decays to ${{\mathit D}^{{(*)}}}{{\overline{\mathit D}}^{{(*)}}}$ , and Implications for the Cabibbo-Kobayashi-Maskawa Angle $\gamma $