$\mathit CP$ VIOLATION PARAMETERS

$\mathit C_{{{\mathit c}} {{\overline{\mathit c}}} {{\mathit K}^{(*)0}}}$ ( ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit c}}{{\overline{\mathit c}}}{{\mathit K}^{(*)0}}$)

INSPIRE   PDGID:
S042CCC
VALUE ($ 10^{-2} $) DOCUMENT ID TECN  COMMENT
$\bf{ -0.5 \pm1.5}$ OUR EVALUATION  $~~$(Produced by HFLAV)
$\bf{ 0.4 \pm1.0}$ OUR AVERAGE
$0.4$ $\pm1.2$ 1
AAIJ
2024
LHCB ${{\mathit p}}{{\mathit p}}$ at 7, 8 and 13 TeV
$-0.6$ $\pm1.6$ $\pm1.2$ 2
ADACHI
2012A
BELL ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \Upsilon}{(4S)}}$
$-29$ ${}^{+53}_{-44}$ $\pm6$ 3
AUBERT
2009AU
BABR ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \Upsilon}{(4S)}}$
$2.4$ $\pm2.0$ $\pm1.6$ 4
AUBERT
2009K
BABR ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \Upsilon}{(4S)}}$
• • We do not use the following data for averages, fits, limits, etc. • •
$0.8$ $\pm1.2$ $\pm0.3$ 5, 6
AAIJ
2024
LHCB ${{\mathit p}}{{\mathit p}}$ at 13 TeV
$-1.7$ $\pm2.9$ 5, 7
AAIJ
2017BN
LHCB ${{\mathit p}}{{\mathit p}}$ at 7, 8 TeV
$-4$ $\pm7$ $\pm5$ 8
SAHOO
2008
BELL Repl. by ADACHI 2012A
$4.9$ $\pm2.3$ $\pm1.8$ 4
AUBERT
2007AY
BABR Repl. by AUBERT 2009K
$-1.8$ $\pm2.1$ $\pm1.4$ 9
CHEN
2007
BELL Repl. by ADACHI 2012A
$-0.7$ $\pm4.1$ $\pm3.3$ 10
ABE
2005B
BELL Repl. by CHEN 2007
$5.1$ $\pm3.2$ $\pm1.4$ 11
AUBERT
2005F
BABR Repl. by AUBERT 2007AY
$5.1$ $\pm5.1$ $\pm2.6$ 12
ABE
2002Z
BELL Repl. by ABE 2005B
$5.3$ $\pm5.4$ $\pm3.2$ 13
AUBERT
2002P
BABR Repl. by AUBERT 2005F
1  A combination of this Run 2 result with the Run 1 result from AAIJ 2017BN is reported with a correlation coefficient of 0.40.
2  Measurement based on ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit J / \psi}}{{\mathit K}_S^0}$ , ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \psi}{(2S)}}{{\mathit K}_S^0}$ , ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit J / \psi}}{{\mathit K}_L^0}$ , and ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \chi}_{{{c1}}}{(1P)}}{{\mathit K}_S^0}$ decays.
3  Uses Dalitz plot analysis of ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ decays and the first of two equivalent solutions is used.
4  Measurement based on ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit c}}{{\overline{\mathit c}}}{{\mathit K}^{(*)0}}$ decays.
5  Measurement based on ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit J / \psi}}{{\mathit K}_S^0}$ , ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \psi}{(2S)}}{{\mathit K}_S^0}$ with ${{\mathit J / \psi}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$, ${{\mathit J / \psi}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ and ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$.
6  AAIJ 2024 provides the correlation coefficient ${{\mathit \rho}}$=0.441 between the uncertainties of sin$(2\beta )$ and $\mathit C_{{{\mathit c}} {{\overline{\mathit c}}} {{\mathit K}^{(*)0}} }$ (${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit c}}{{\overline{\mathit c}}}{{\mathit K}^{(*)0}}$ ) measurements.
7  AAIJ 2017BN provides the correlation coefficient ${{\mathit \rho}}$=0.42 between the uncertainties of ${{\mathit S}}_{ {{\mathit B}^{0}} \rightarrow {{\mathit c}} {{\overline{\mathit c}}} {{\mathit K}^{(*)0}}}$( ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit c}}{{\overline{\mathit c}}}{{\mathit K}^{(*)0}}$) and $\mathit C_{{{\mathit c}} {{\overline{\mathit c}}} {{\mathit K}^{(*)0}} }$ (${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit c}}{{\overline{\mathit c}}}{{\mathit K}^{(*)0}}$ ) measurements.
8  Reports value of $\mathit A$ of ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \psi}{(2S)}}{{\mathit K}^{0}}$ which is equal to $−\mathit C$.
9  Reports value of $\mathit A$ of ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit J / \psi}}{{\mathit K}^{0}}$ which is equal to $−\mathit C$.
10  Measurement based on $152 \times 10^{6}{{\mathit B}}{{\overline{\mathit B}}}$ pairs.
11  Measurement based on $227 \times 10^{6}{{\mathit B}}{{\overline{\mathit B}}}$ pairs.
12  Measured with both $\eta _{\mathit f}$ = $\pm1$ samples.
13  Measured with the high purity of $\eta _{\mathit f}$ = $-1$ samples.
Conservation Laws:
$\mathit CP$ INVARIANCE
References