$\mathit CP$ VIOLATION PARAMETERS

$\mathit A_{\mathit T/CP}$

INSPIRE   PDGID:
S042Y3
$\mathit A_{\mathit T/CP}$ is defined as

${\mathit P( {{\overline{\mathit B}}^{0}} \rightarrow {{\mathit B}^{0}})–\mathit P( {{\mathit B}^{0}} \rightarrow {{\overline{\mathit B}}^{0}})\over \mathit P( {{\overline{\mathit B}}^{0}} \rightarrow {{\mathit B}^{0}})+\mathit P( {{\mathit B}^{0}} \rightarrow {{\overline{\mathit B}}^{0}})}~$,

the $\mathit CPT$ invariant asymmetry between the oscillation probabilities P( ${{\overline{\mathit B}}^{0}}$ $\rightarrow$ ${{\mathit B}^{0}}$) and P( ${{\mathit B}^{0}}$ $\rightarrow$ ${{\overline{\mathit B}}^{0}}$).
VALUE DOCUMENT ID TECN  COMMENT
$0.005$ $\pm0.012$ $\pm0.014$ 1
AUBERT
2002K
BABR ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \Upsilon}{(4S)}}$
1  AUBERT 2002K uses the charge asymmetry in like-sign dilepton events.
Conservation Laws:
$\mathit CP$ INVARIANCE
References