${{\mathit B}_{{{s}}}^{0}}-{{\overline{\mathit B}}_{{{s}}}^{0}}$ MIXING

For a discussion of ${{\mathit B}_{{{s}}}^{0}}-{{\overline{\mathit B}}_{{{s}}}^{0}}$ mixing see the note on “${{\mathit B}^{0}}-{{\overline{\mathit B}}^{0}}$ Mixing” in the ${{\mathit B}^{0}}$ Particle Listings above.
${{\mathit \chi}_{{{s}}}}$ is a measure of the time-integrated ${{\mathit B}_{{{s}}}^{0}}-{{\overline{\mathit B}}_{{{s}}}^{0}}$ mixing probability that produced ${{\mathit B}_{{{s}}}^{0}}({{\overline{\mathit B}}_{{{s}}}^{0}}$) decays as a ${{\overline{\mathit B}}_{{{s}}}^{0}}({{\mathit B}_{{{s}}}^{0}}$). Mixing violates $\Delta \mathit B{}\not=$2 rule.
${{\mathit \chi}_{{{s}}}}$ = ${\mathit x{}^{2}_{\mathit s}\over 2(1+\mathit x{}^{2}_{\mathit s})}$

$\mathit x_{\mathit s}$ = ${\Delta {\mathit m}_{{{\mathit B}_{{{s}}}^{0}}}\over \Gamma _{{{\mathit B}_{{{s}}}^{0}}}}$ = (${\mathit m}_{\mathrm {{{\mathit B}}{}^{0}_{{{\mathit s}} {{\mathit H}}}}}$ $-$ ${\mathit m}_{\mathrm {{{\mathit B}}{}^{0}_{{{\mathit s}} {{\mathit L}}}}}){\mathit \tau}_{{{\mathit B}_{{{s}}}^{0}}}$ ,
where $\mathit H$, $\mathit L$ stand for heavy and light states of two ${{\mathit B}_{{{s}}}^{0}}$ $\mathit CP$ eigenstates and ${\mathit \tau}_{{{\mathit B}_{{{s}}}^{0}}}$ = ${1\over 0.5 (\Gamma _{{{\mathit B}}{}^{0}_{{{\mathit s}} {{\mathit H}}}}+\Gamma _{{{\mathit B}}{}^{0}_{{{\mathit s}} {{\mathit L}}}})}$.

$\Delta {\mathit m}_{{{\mathit B}_{{{s}}}^{0}}}$ = ${\mathit m}_{\mathrm {{{\mathit B}}{}^{0}_{{{\mathit s}} {{\mathit H}}}}}$ $-$ ${\mathit m}_{\mathrm {{{\mathit B}}{}^{0}_{{{\mathit s}} {{\mathit L}}}}}$

INSPIRE   PDGID:
S086D
$\Delta {\mathit m}_{{{\mathit B}_{{{s}}}^{0}}}$ is a measure of 2${{\mathit \pi}}$ times the ${{\mathit B}_{{{s}}}^{0}}-{{\overline{\mathit B}}_{{{s}}}^{0}}$ oscillation frequency in time-dependent mixing experiments.

VALUE ($ 10^{12} $ $\hbar{}$ s${}^{-1}$) CL% DOCUMENT ID TECN  COMMENT
$\bf{ 17.765 \pm0.006}$ OUR EVALUATION  $~~$(Produced by HFLAV)
$\bf{ 17.765 \pm0.005}$ OUR AVERAGE
$17.743$ $\pm0.033$ $\pm0.009$ 1
AAIJ
2024A
LHCB ${{\mathit p}}{{\mathit p}}$ at 13 TeV
$17.7683$ $\pm0.0051$ $\pm0.0032$ 2
AAIJ
2022B
LHCB ${{\mathit p}}{{\mathit p}}$ at 13 TeV
$17.757$ $\pm0.007$ $\pm0.008$ 3
AAIJ
2021M
LHCB ${{\mathit p}}{{\mathit p}}$ at 7, 8, 13 TeV
$17.51$ ${}^{+0.10}_{-0.09}$ $\pm0.03$ 4
SIRUNYAN
2021E
CMS ${{\mathit p}}{{\mathit p}}$ at 13 TeV
$17.768$ $\pm0.023$ $\pm0.006$ 2
AAIJ
2013BI
LHCB ${{\mathit p}}{{\mathit p}}$ at 7 TeV
$17.93$ $\pm0.22$ $\pm0.15$ 5
AAIJ
2013CF
LHCB ${{\mathit p}}{{\mathit p}}$ at 7 TeV
$17.77$ $\pm0.10$ $\pm0.07$ 6
ABULENCIA,A
2006G
CDF ${{\mathit p}}{{\overline{\mathit p}}}$ at 1.96 TeV
• • We do not use the following data for averages, fits, limits, etc. • •
$17.703$ $\pm0.059$ $\pm0.018$ 1
AAIJ
2019Q
LHCB Repl. by AAIJ 2024A
$17.711$ ${}^{+0.055}_{-0.057}$ $\pm0.011$ 1
AAIJ
2015I
LHCB Repl. by AAIJ 2019Q
$17.63$ $\pm0.11$ $\pm0.02$ 7
AAIJ
2012I
LHCB Repl. by AAIJ 2021M
$\text{17 - 21}$ 90 8
ABAZOV
2006B
D0 ${{\mathit p}}{{\overline{\mathit p}}}$ at 1.96 TeV
$17.31$ ${}^{+0.33}_{-0.18}$ $\pm0.07$ 9
ABULENCIA
2006Q
CDF Repl. by ABULENCIA,A 2006G
$>8.0$ 95 10
ABDALLAH
2004J
DLPH ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit Z}^{0}}$
$>4.9$ 95 11
ABDALLAH
2004J
DLPH ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit Z}^{0}}$
$>8.5$ 95 12
ABDALLAH
2004J
DLPH ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit Z}^{0}}$
$>5.0$ 95 13
ABDALLAH
2003B
DLPH ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit Z}}$
$>10.3$ 95 14
ABE
2003
SLD ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit Z}}$
$>10.9$ 95 15
HEISTER
2003E
ALEP ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit Z}}$
$>5.3$ 95 16
ABE
2002V
SLD ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit Z}}$
$>1.0$ 95 17
ABBIENDI
2001D
OPAL ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit Z}}$
$>7.4$ 95 18
ABREU
2000Y
DLPH Repl. by ABDALLAH 2004J
$>4.0$ 95 19
ABREU,P
2000G
DLPH ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit Z}}$
$>5.2$ 95 20
ABBIENDI
1999S
OPAL ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit Z}}$
$<96$ 95 21
ABE
1999D
CDF ${{\mathit p}}{{\overline{\mathit p}}}$ at $1.8$ TeV
$>5.8$ 95 22
ABE
1999J
CDF ${{\mathit p}}{{\overline{\mathit p}}}$ at $1.8$ TeV
$>9.6$ 95 23
BARATE
1999J
ALEP ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit Z}}$
$>7.9$ 95 24
BARATE
1998C
ALEP Repl. by BARATE 1999J
$>3.1$ 95 25
ACKERSTAFF
1997U
OPAL Repl. by ABBIENDI 1999S
$>2.2$ 95 26
ACKERSTAFF
1997V
OPAL Repl. by ABBIENDI 1999S
$>6.5$ 95 27
ADAM
1997
DLPH Repl. by ABREU 2000Y
$>6.6$ 95 28
BUSKULIC
1996M
ALEP Repl. by BARATE 1998C
$>2.2$ 95 26
AKERS
1995J
OPAL Sup. by ACKERSTAFF 1997V
$>5.7$ 95 29
BUSKULIC
1995J
ALEP ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit Z}}$
$>1.8$ 95 26
BUSKULIC
1994B
ALEP ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit Z}}$
1  Measured using time-dependent angular analysis of ${{\mathit B}_{{{s}}}^{0}}$ $\rightarrow$ ${{\mathit J / \psi}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ decays.
2  Measured using ${{\mathit B}_{{{s}}}^{0}}$ $\rightarrow$ ${{\mathit D}_{{{s}}}^{-}}{{\mathit \pi}^{+}}$ decays.
3  Measured using ${{\mathit B}_{{{s}}}^{0}}$ $\rightarrow$ ${{\mathit D}_{{{s}}}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{+}}$ decays.
4  Measured using time-dependent angular analysis of ${{\mathit B}_{{{s}}}^{0}}$ $\rightarrow$ ${{\mathit J / \psi}}{{\mathit \phi}}$ decays.
5  Measured using ${{\mathit B}_{{{s}}}^{0}}$ $\rightarrow$ ${{\mathit D}_{{{s}}}^{-}}{{\mathit \mu}^{+}}{{\mathit \nu}_{{{\mu}}}}{{\mathit X}}$ decays.
6  Significance of oscillation signal is 5.4 $\sigma $. Also reports $\vert \mathit V_{\mathit td}$ $/$ $\mathit V_{\mathit ts}\vert $ = $0.2060$ $\pm0.0007$ ${}^{+0.0081}_{-0.0060}$.
7  Measured using ${{\mathit B}_{{{s}}}^{0}}$ $\rightarrow$ ${{\mathit D}_{{{s}}}^{-}}{{\mathit \pi}^{+}}$ and ${{\mathit D}_{{{s}}}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{+}}$ decays.
8  A likelihood scan over the oscillation frequency, $\Delta \mathit m_{s}$, gives a most probable value of 19$~$ps${}^{-1}$ and a range of 17$<\Delta \mathit m_{s}<21~$(ps${}^{-1}$) at 90$\%$ C.L. assuming Gaussian uncertainties. Also excludes $\Delta \mathit m_{s}<14.8~$ps${}^{-1}$ at 95$\%$ C.L
9  Significance of oscillation signal is 0.2$\%$. Also reported the value $\vert \mathit V_{\mathit td}$ $/$ $\mathit V_{\mathit ts}\vert $ = $0.208$ ${}^{+0.001}_{-0.002}{}^{+0.008}_{-0.006}$.
10  Uses leptons emitted with large momentum transverse to a jet and improved techniques for vertexing and flavor-tagging.
11  Updates of ${{\mathit D}_{{{s}}}}$-lepton analysis.
12  Combined results from all Delphi analyses.
13  Events with a high transverse momentum lepton were removed and an inclusively reconstructed vertex was required.
14  ABE 2003 uses the novel ``charge dipole'' technique to reconstruct separate secondary and tertiary vertices originating from the ${{\mathit B}}$ $\rightarrow$ ${{\mathit D}}$ decay chain. The analysis excludes $\Delta {\mathit m}_{{{\mathit s}}}<4.9~$ps${}^{-1}$ and 7.9$<\Delta {\mathit m}_{{{\mathit s}}}<10.3~$ps${}^{-1}$.
15  Three analyses based on complementary event selections: (1) fully-reconstructed hadronic decays; (2) semileptonic decays with ${{\mathit D}_{{{s}}}}$ exclusively reconstructed; (3) inclusive semileptonic decays.
16  ABE 2002V uses exclusively reconstructed ${{\mathit D}_{{{s-}}}}$ mesons and excludes $\Delta {\mathit m}_{{{\mathit s}}}<1.4~$ps${}^{-1}$ and 2.4$<\Delta {\mathit m}_{{{\mathit s}}}<5.3~$ps${}^{-1}$ at 95$\%$CL.
17  Uses fully or partially reconstructed ${{\mathit D}_{{{s}}}}{{\mathit \ell}}$ vertices and a mixing tag as a flavor tagging.
18  Replaced by ABDALLAH 2004A. Uses ${{\mathit D}_{{{s}}}^{-}}{{\mathit \ell}^{+}}$, and ${{\mathit \phi}}{{\mathit \ell}^{+}}$ vertices, and a multi-variable discriminant as a flavor tagging.
19  Uses inclusive ${{\mathit D}_{{{s}}}}$ vertices and fully reconstructed ${{\mathit B}_{{{s}}}}$ decays and a multi-variable discriminant as a flavor tagging.
20  Uses ${{\mathit \ell}}-\mathit Q_{{\mathrm {hem}}}$ and ${{\mathit \ell}}-{{\mathit \ell}}$.
21  ABE 1999D assumes $\tau _{{{\mathit B}_{{{s}}}^{0}}}$= $1.55$ $\pm0.05~$ps and $\Delta \Gamma /\Delta \mathit m$= ($5.6$ $\pm2.6$) $ \times 10^{-3}$.
22  ABE 1999J uses $\phi $ ${{\mathit \ell}}-{{\mathit \ell}}$ correlation.
23  BARATE 1999J uses combination of an inclusive lepton and ${{\mathit D}_{{{s}}}^{-}}$-based analyses.
24  BARATE 1998C combines results from ${{\mathit D}_{{{s}}}}{{\mathit h}}-{{\mathit \ell}}/\mathit Q_{{\mathrm {hem}}}$, ${{\mathit D}_{{{s}}}}{{\mathit h}}-{{\mathit K}}$ in the same side, ${{\mathit D}_{{{s}}}}{{\mathit \ell}}-{{\mathit \ell}}/\mathit Q_{{\mathrm {hem}}}$ and ${{\mathit D}_{{{s}}}}{{\mathit \ell}}-{{\mathit K}}$ in the same side.
25  Uses ${{\mathit \ell}}-\mathit Q_{{\mathrm {hem}}}$.
26  Uses ${{\mathit \ell}}-{{\mathit \ell}}$.
27  ADAM 1997 combines results from ${{\mathit D}_{{{s}}}}{{\mathit \ell}}-\mathit Q_{{\mathrm {hem}}}$, ${{\mathit \ell}}-\mathit Q_{{\mathrm {hem}}}$, and ${{\mathit \ell}}-{{\mathit \ell}}$.
28  BUSKULIC 1996M uses ${{\mathit D}_{{{s}}}}$ lepton correlations and lepton, kaon, and jet charge tags.
29  BUSKULIC 1995J uses ${{\mathit \ell}}-\mathit Q_{{\mathrm {hem}}}$. They find $\Delta {\mathit m}_{{{\mathit s}}}>5.6$ [$>6.1$] for ${{\mathit f}_{{{s}}}}=10\%$ [12$\%$]. We interpolate to our central value ${{\mathit f}_{{{s}}}}=10.5\%$.
Conservation Laws:
$\Delta \mathit B$ = 2 VIA MIXING
References