${{\mathit f}_{{{2}}}{(2150)}}$ MASS

${{\overline{\mathit p}}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit \pi}}{{\mathit \pi}}$

INSPIRE   JSON  (beta) PDGID:
M042M1
VALUE (MeV) DOCUMENT ID TECN  COMMENT
• • We do not use the following data for averages, fits, limits, etc. • •
$\sim$$2090$ 1
OAKDEN
99
 
RVUE $0.36 - 1.55$ ${{\overline{\mathit p}}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit \pi}}{{\mathit \pi}}$
$\sim$$2120$ 2
OAKDEN
99
 
RVUE $0.36 - 1.55$ ${{\overline{\mathit p}}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit \pi}}{{\mathit \pi}}$
$\sim$$2170$ 3
MARTIN
98B
 
RVUE
$\sim$$2150$ 3
MARTIN
98C
 
RVUE
$\sim$$2150$ 4
DULUDE
97B
 
OSPK 1$-$2 ${{\overline{\mathit p}}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit \pi}^{0}}{{\mathit \pi}^{0}}$
1  OAKDEN 1994 makes an amplitude analysis of LEAR data on ${{\overline{\mathit p}}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit \pi}}{{\mathit \pi}}$ using a method based on Barrelet zeros. This is solution A. The amplitude analysis of HASAN 1994 includes earlier data as well, and assume that the data can be parametrized in terms of towers of nearly degenerate resonances on the leading Regge trajectory. See also KLOET 1996 and MARTIN 1997 who make related analyses.
2  From solution B of amplitude analysis of data on ${{\overline{\mathit p}}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit \pi}}{{\mathit \pi}}$.
3  $\mathit I(\mathit J{}^{P}) = 0(2{}^{+})$ from simultaneous analysis of ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit \pi}^{+}}$ and ${{\mathit \pi}^{0}}{{\mathit \pi}^{0}}$.
4  $\mathit I{}^{G}(\mathit J{}^{P}) = 0{}^{+}(2{}^{+})$ from partial-wave amplitude analysis.
References