${{\mathit f}_{{{0}}}{(1370)}}$ T-MATRIX POLE $\sqrt {\mathit s }$

INSPIRE   JSON  (beta) PDGID:
M147PP
Note that $\Gamma $ = $−$2 Im($\sqrt {s }$).
VALUE (MeV) DOCUMENT ID TECN  COMMENT
$\bf{ (1250 - 1440) −{\mit i} (60 - 300)}$ OUR ESTIMATE
$(1245 \pm40)−{\mit i}(300 {}^{+30}_{-70})$ 1
PELAEZ
02
 
RVUE Compilation
$(1380 {}^{+70}_{-60})−{\mit i}(220 {}^{+80}_{-70})$ 2
PELAEZ
02
 
RVUE Compilation
$(1370 \pm40)−{\mit i}(195 \pm20)$
SARANTSEV
02
 
RVUE ${{\mathit J / \psi}{(1S)}}$ $\rightarrow$ ${{\mathit \gamma}}$ (${{\mathit \pi}}{{\mathit \pi}}$ , ${{\mathit K}}{{\overline{\mathit K}}}$ , ${{\mathit \eta}}{{\mathit \eta}}$ , ${{\mathit \omega}}{{\mathit \phi}}$)
$(1280.6 \pm1.6 \pm47.4) − {\mit i}(205.2 \pm1.7 \pm20.7)$ 3
ALBRECHT
02
 
RVUE 0.9 ${{\overline{\mathit p}}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit \pi}^{0}}{{\mathit \pi}^{0}}{{\mathit \eta}}$ , ${{\mathit \pi}^{0}}{{\mathit \eta}}{{\mathit \eta}}$ , ${{\mathit \pi}^{0}}{{\mathit K}^{+}}{{\mathit K}^{-}}$
$(1290 \pm50)−{\mit i}(170 {}^{+20}_{-40})$ 4
ANISOVICH
00
 
RVUE 0.0 ${{\overline{\mathit p}}}{{\mathit p}}$, ${{\mathit \pi}}{{\mathit N}}$
$(1373 \pm15)−{\mit i}(137 \pm10)$ 5
BARGIOTTI
00
 
OBLX ${{\overline{\mathit p}}}{{\mathit p}}$
$(1302 \pm17)−{\mit i}(166 \pm18)$ 6
BARBERIS
00C
 
450 ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit p}_{{{f}}}}$4 ${{\mathit \pi}}{{\mathit p}_{{{s}}}}$
$(1312 \pm25 \pm10)−{\mit i}(109 \pm22 \pm15)$
BARBERIS
99D
 
OMEG 450 ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}$, ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$
$(1406 \pm19)−{\mit i}(80 \pm6)$ 7
KAMINSKI
99
 
RVUE ${{\mathit \pi}}$ ${{\mathit \pi}}$ $\rightarrow$ ${{\mathit \pi}}{{\mathit \pi}}$, ${{\mathit K}}{{\overline{\mathit K}}}$, ${{\mathit \sigma}}{{\mathit \sigma}}$
$(1300 \pm20)−{\mit i}(120 \pm20)$
ANISOVICH
99B
 
RVUE Compilation
$(1290 \pm15)−{\mit i}(145 \pm15)$
BARBERIS
99B
 
OMEG 450 ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit p}}{{\mathit p}}$2( ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$)
$(1548 \pm40)−{\mit i}(560 \pm40)$
BERTIN
99C
 
OBLX 0.0 ${{\overline{\mathit p}}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$
$(1380 \pm40)−{\mit i}(180 \pm25)$
ABELE
99B
 
CBAR 0.0 ${{\overline{\mathit p}}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit \pi}^{0}}{{\mathit K}_L^0}$ ${{\mathit K}_L^0}$
$(1300 \pm15)−{\mit i}(115 \pm8)$
BUGG
99
 
RVUE
$(1330 \pm50)−{\mit i}(150 \pm40)$ 8
AMSLER
99B
 
CBAR ${{\overline{\mathit p}}}$ ${{\mathit p}}$ $\rightarrow$ 3 ${{\mathit \pi}^{0}}$
$(1360 \pm35)−{\mit i}(150 - 300)$ 8
AMSLER
99C
 
CBAR ${{\overline{\mathit p}}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit \pi}^{0}}{{\mathit \eta}}{{\mathit \eta}}$
$(1390 \pm30)−{\mit i}(190 \pm40)$ 9
AMSLER
99D
 
CBAR ${{\overline{\mathit p}}}$ ${{\mathit p}}$ $\rightarrow$ 3 ${{\mathit \pi}^{0}}$, ${{\mathit \pi}^{0}}{{\mathit \eta}}{{\mathit \eta}}$, ${{\mathit \pi}^{0}}{{\mathit \pi}^{0}}{{\mathit \eta}}$
$1346−{\mit i}\text{ 249}$ 10, 11
JANSSEN
99
 
RVUE ${{\mathit \pi}}$ ${{\mathit \pi}}$ $\rightarrow$ ${{\mathit \pi}}{{\mathit \pi}}$, ${{\mathit K}}{{\overline{\mathit K}}}$
$1214−{\mit i}\text{ 168}$ 12, 11
TORNQVIST
99
 
RVUE ${{\mathit \pi}}$ ${{\mathit \pi}}$ $\rightarrow$ ${{\mathit \pi}}{{\mathit \pi}}$, ${{\mathit K}}{{\overline{\mathit K}}}$, ${{\mathit K}}{{\mathit \pi}}$, ${{\mathit \eta}}{{\mathit \pi}}$
$1364−{\mit i}\text{ 139}$
AMSLER
99D
 
CBAR ${{\overline{\mathit p}}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit \pi}^{0}}{{\mathit \pi}^{0}}{{\mathit \eta}}$
$(1365 {}^{+20}_{-55})−{\mit i}(134 \pm35)$
ANISOVICH
99
 
CBAR ${{\overline{\mathit p}}}$ ${{\mathit p}}$ $\rightarrow$ 3 ${{\mathit \pi}^{0}}$ , ${{\mathit \pi}^{0}}{{\mathit \eta}}{{\mathit \eta}}$
$(1340 \pm40)−{\mit i}(127 {}^{+30}_{-20})$ 13
BUGG
99
 
RVUE ${{\overline{\mathit p}}}$ ${{\mathit p}}$ $\rightarrow$ 3 ${{\mathit \pi}^{0}}$, ${{\mathit \eta}}{{\mathit \eta}}{{\mathit \pi}^{0}}$, ${{\mathit \eta}}{{\mathit \pi}^{0}}{{\mathit \pi}^{0}}$
$(1430 \pm5)−{\mit i}(73 \pm13)$ 14
KAMINSKI
99
 
RVUE ${{\mathit \pi}}$ ${{\mathit \pi}}$ $\rightarrow$ ${{\mathit \pi}}{{\mathit \pi}}$, ${{\mathit K}}{{\overline{\mathit K}}}$
$1420−{\mit i}\text{ 220}$ 15
AU
98
 
RVUE ${{\mathit \pi}}$ ${{\mathit \pi}}$ $\rightarrow$ ${{\mathit \pi}}{{\mathit \pi}}$, ${{\mathit K}}{{\overline{\mathit K}}}$
1  From forward dispersion relation applied to ${{\mathit \pi}}{{\mathit \pi}}$ scattering data.
2  From partial-wave dispersion relation applied to ${{\mathit \pi}}$ ${{\mathit \pi}}$ $\rightarrow$ ${{\overline{\mathit K}}}{{\mathit K}}$ data.
3  T-matrix pole, 5 poles, 5 channels, including scattering data from HYAMS 1975 (${{\mathit \pi}}{{\mathit \pi}}$), LONGACRE 1986 (${{\mathit K}}{{\overline{\mathit K}}}$), BINON 1983 (${{\mathit \eta}}{{\mathit \eta}}$), and BINON 1984C (${{\mathit \eta}}{{\mathit \eta}^{\,'}}$).
4  Another pole is found at ($1510$ $\pm130$) $−$ $\mathit i$ ($800$ ${}^{+100}_{-150}$) MeV.
5  Coupled channel analysis of ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$, ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit \pi}^{0}}$, and ${{\mathit K}^{\pm}}{{\mathit K}_S^0}$ ${{\mathit \pi}^{\mp}}$.
6  Average between ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$2 ${{\mathit \pi}^{0}}$ and 2(${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$).
7  T-matrix pole on sheet $−−−$.
8  Supersedes ANISOVICH 1994.
9  Coupled-channel analysis of ${{\overline{\mathit p}}}$ ${{\mathit p}}$ $\rightarrow$ 3 ${{\mathit \pi}^{0}}$, ${{\mathit \pi}^{0}}{{\mathit \eta}}{{\mathit \eta}}$, and ${{\mathit \pi}^{0}}{{\mathit \pi}^{0}}{{\mathit \eta}}$ on sheet$~$IV. Demonstrates explicitly that ${{\mathit f}_{{{0}}}{(500)}}$ and ${{\mathit f}_{{{0}}}{(1370)}}$ are two different poles.
10  Analysis of data from FALVARD 1988.
11  The pole is on Sheet III. Demonstrates explicitly that ${{\mathit f}_{{{0}}}{(500)}}$ and ${{\mathit f}_{{{0}}}{(1370)}}$ are two different poles.
12  Uses data from BEIER 1972B, OCHS 1973, HYAMS 1973, GRAYER 1974, ROSSELET 1977, CASON 1983, ASTON 1988, and ARMSTRONG 1991B. Coupled channel analysis with flavor symmetry and all light two-pseudoscalars systems.
13  Reanalysis of ANISOVICH 1994 data.
14  T-matrix pole on sheet III.
15  Analysis of data from OCHS 1973,GRAYER 1974, BECKER 1979, and CASON 1983.
References