ENERGY DEPENDENCE OF ${{\mathit \eta}}$ $\rightarrow$ 3 ${{\mathit \pi}}$ DALITZ PLOTS

PARAMETERS FOR ${{\mathit \eta}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$

INSPIRE   JSON  (beta) PDGID:
S014DP
See the “Note on ${{\mathit \eta}}$ Decay Parameters,” page 1454, in our 1994 edition (Physical Review D50 1173 (1994)). The following experiments fit to one or more of the coefficients $\mathit a$, $\mathit b$, $\mathit c$, $\mathit d$, $\mathit e$, $\mathit f$ or $\mathit g$ for $\vert $matrix element$\vert ^2$ = 1 + $\mathit a{}\mathit y$ + $\mathit b{}\mathit y{}^{2}$ + $\mathit c{}\mathit x$ + $\mathit d{}\mathit x{}^{2}$ + $\mathit e{}\mathit x{}\mathit y$ + $\mathit f{}\mathit y{}^{3}$ + $\mathit g{}\mathit x{}^{2}{}\mathit y$.
VALUE EVTS DOCUMENT ID TECN  COMMENT
• • We do not use the following data for averages, fits, limits, etc. • •
631k 1
ABLIKIM
2023AN
 
BES3 ${{\mathit J / \psi}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \eta}}$
4.7M 2
ANASTASI
2016A
 
KLOE ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \phi}}$ $\rightarrow$ ${{\mathit \eta}}{{\mathit \gamma}}$
79k
ABLIKIM
2015G
 
BES3 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit J / \psi}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \eta}}$
174k
ADLARSON
2014A
 
WASA ${{\mathit p}}$ ${{\mathit d}}$ $\rightarrow$ ${{\mathit \eta}}{}^{3}\mathrm {He}$
1.34M
AMBROSINO
2008D
 
KLOE
3230 3
ABELE
1998D
 
CBAR ${{\overline{\mathit p}}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit \pi}^{0}}{{\mathit \pi}^{0}}{{\mathit \eta}}$ at rest
1077 4
AMSLER
1995
 
CBAR ${{\overline{\mathit p}}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \eta}}$ at rest
81k
LAYTER
1973
 
ASPK
220k
LAYTER
1972
 
ASPK
1138
CARPENTER
1970
 
HBC
349
DANBURG
1970
 
DBC
7250
GORMLEY
1970
 
WIRE
526
BAGLIN
1969
 
HLBC
7170
CNOPS
1968
 
OSPK
37k
GORMLEY
1968C
 
WIRE
1300
CLPWY
1966
 
HBC
705
LARRIBE
1966
 
HBC
1  ABLIKIM 2023AN fit the Dalitz plot density distribution with two parameter sets ($\mathit a,~b,~d,~f$), and ($\mathit a,~b,~d,~f,~g$).
2  ANASTASI 2016A measure the Dalitz parameters $\mathit a$, $\mathit b$, $\mathit d$, $\mathit f$, and $\mathit g$. This is the first measurement of $\mathit g$.
3  ABELE 1998D obtains $\mathit a$ =$-1.22$ $\pm0.07$ and $\mathit b$ = $0.22$ $\pm0.11$ when $\mathit c$ (or$~\mathit d$) is fixed at $0.06$.
4  AMSLER 1995 fits to (1$+\mathit ay+\mathit by{}^{2}$) and obtains $\mathit a=-0.94$ $\pm0.15$ and $\mathit b=0.11$ $\pm0.27$.
References