${{\mathit \Delta}{(1900)}}$ POLE POSITION

$-2{\times }$IMAGINARY PART

INSPIRE   PDGID:
B030IM
VALUE (MeV) DOCUMENT ID TECN  COMMENT
$\bf{ 180\text{ to }300\text{ }(\approx240) }$ OUR ESTIMATE
$295$ $\pm35$
SOKHOYAN
2015A
DPWA Multichannel
$187$ $\pm50$ $\pm19$ 1
SVARC
2014
L+P ${{\mathit \pi}}$ ${{\mathit N}}$ $\rightarrow$ ${{\mathit \pi}}{{\mathit N}}$
$180$ $\pm50$
CUTKOSKY
1980
IPWA ${{\mathit \pi}}$ ${{\mathit N}}$ $\rightarrow$ ${{\mathit \pi}}{{\mathit N}}$
• • We do not use the following data for averages, fits, limits, etc. • •
$447$
HUNT
2019
DPWA Multichannel
$295$ $\pm35$
GUTZ
2014
DPWA Multichannel
$300$ $\pm45$
ANISOVICH
2012A
DPWA Multichannel
$58$
VRANA
2000
DPWA Multichannel
1  Fit to the amplitudes of HOEHLER 1979 .
References:
HUNT 2019
PR C99 055205 Updated determination of $N^*$ resonance parameters using a unitary, multichannel formalism
SOKHOYAN 2015A
EPJ A51 95 High-Statistics Study of the Reaction ${{\mathit \gamma}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit p}}$2 ${{\mathit \pi}^{0}}$
GUTZ 2014
EPJ A50 74 High Statistics Study of the Reaction
SVARC 2014
PR C89 045205 Poles of Karlsruhe-Helsinki KH80 and KA84 Solutions Extracted by using the Laurent-Pietarinen Method
ANISOVICH 2012A
EPJ A48 15 Properties of Baryon Resonances from a Multichannel Partial Wave Analysis
VRANA 2000
PRPL 328 181 Baryon Resonance Extraction from ${{\mathit \pi}}$ N Data using a Unitary Multichannel Model
CUTKOSKY 1980
Toronto Conf. 19 Pion $−$ Nucleon Partial Wave Analysis
Also
PR D20 2839 Pion Nucleon Partial Wave Amplitudes