${{\mathit \Sigma}{(1750)}}$ WIDTH

INSPIRE   PDGID:
B057W
VALUE (MeV) DOCUMENT ID TECN  COMMENT
$\bf{ 100\text{ to }200\text{ }(\approx150) }$ OUR ESTIMATE
$208$ $\pm18$
SARANTSEV
2019
DPWA ${{\overline{\mathit K}}}{{\mathit N}}$ multichannel
$182$ $\pm60$
ZHANG
2013A
DPWA ${{\overline{\mathit K}}}{{\mathit N}}$ multichannel
$64$ $\pm10$
GOPAL
1980
DPWA ${{\overline{\mathit K}}}$ ${{\mathit N}}$ $\rightarrow$ ${{\overline{\mathit K}}}{{\mathit N}}$
$161$ $\pm20$
ALSTON-GARNJO..
1978
DPWA ${{\overline{\mathit K}}}$ ${{\mathit N}}$ $\rightarrow$ ${{\overline{\mathit K}}}{{\mathit N}}$
• • We do not use the following data for averages, fits, limits, etc. • •
$60$ $\pm10$
GOPAL
1977
DPWA ${{\overline{\mathit K}}}{{\mathit N}}$ multichannel
$117$ or $119$ 1
MARTIN
1977
DPWA ${{\overline{\mathit K}}}{{\mathit N}}$ multichannel
$10$ 2
CARROLL
1976
DPWA Isospin-1 total $\sigma{}$
$110$
DEBELLEFON
1976
IPWA ${{\mathit K}^{-}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \pi}^{0}}$
$140$ $\pm30$
BAILLON
1975
IPWA ${{\overline{\mathit K}}}$ ${{\mathit N}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \pi}}$ (sol. 1)
$160$ $\pm50$
BAILLON
1975
IPWA ${{\overline{\mathit K}}}$ ${{\mathit N}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \pi}}$ (sol. 2)
$66$ ${}^{+14}_{-12}$
VANHORN
1975
DPWA ${{\mathit K}^{-}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \pi}^{0}}$
$89$ $\pm33$
CHU
1974
DBC Fits ${\mathit \sigma (}$ ${{\mathit K}^{-}}$ ${{\mathit n}}$ $\rightarrow$ ${{\mathit \Sigma}^{-}}{{\mathit \eta}}{)}$
$92$ $\pm7$ 3
JONES
1974
HBC Fits ${\mathit \sigma (}$ ${{\mathit K}^{-}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit \Sigma}^{0}}{{\mathit \eta}}{)}$
$108$ $\pm20$
PREVOST
1974
DPWA ${{\mathit K}^{-}}$ ${{\mathit N}}$ $\rightarrow$ ${{\mathit \Sigma}{(1385)}}{{\mathit \pi}}$
1  The two MARTIN 1977 values are from a T-matrix pole and from a Breit-Wigner fit.
2  A total cross-section bump with ($\mathit J$+1/2) $\Gamma _{{\mathrm {el}}}$ $/$ $\Gamma _{{\mathrm {total}}}$ = 0.30.
3  An ${\mathit S}{\mathrm -wave}$ Breit-Wigner fit to the threshold cross section with no background and errors statistical only.
References