${{\mathit \Delta}{(1920)}}$ POLE POSITION

REAL PART

INSPIRE search
VALUE (MeV) DOCUMENT ID TECN  COMMENT
$\bf{ 1850\text{ to }1950\text{ }(\approx1900) }$ OUR ESTIMATE
$1875$ $\pm30$
SOKHOYAN
2015A
DPWA Multichannel
$1906$ $\pm10$ $\pm2$ 1
SVARC
2014
L+P ${{\mathit \pi}}$ ${{\mathit N}}$ $\rightarrow$ ${{\mathit \pi}}{{\mathit N}}$
$1900$ $\pm80$
CUTKOSKY
1980
IPWA ${{\mathit \pi}}$ ${{\mathit N}}$ $\rightarrow$ ${{\mathit \pi}}{{\mathit N}}$
• • We do not use the following data for averages, fits, limits, etc. • •
$1910$
HUNT
2019
DPWA Multichannel
$1715$
ROENCHEN
2015A
DPWA Multichannel
$1875$ $\pm30$
GUTZ
2014
DPWA Multichannel
$1890$ $\pm30$
ANISOVICH
2012A
DPWA Multichannel
$1880$
VRANA
2000
DPWA Multichannel
$1900$
HOEHLER
1993
SPED ${{\mathit \pi}}$ ${{\mathit N}}$ $\rightarrow$ ${{\mathit \pi}}{{\mathit N}}$
1  Fit to the amplitudes of HOEHLER 1979 .
References:
HUNT 2019
PR C99 055205 Updated determination of $N^*$ resonance parameters using a unitary, multichannel formalism
ROENCHEN 2015A
EPJ A51 70 ${{\mathit \eta}}$ Photoproduction in a Combined Analysis of Pion- and Photon-Induced Reactions
SOKHOYAN 2015A
EPJ A51 95 High-Statistics Study of the Reaction ${{\mathit \gamma}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit p}}$2 ${{\mathit \pi}^{0}}$
GUTZ 2014
EPJ A50 74 High Statistics Study of the Reaction ${{\mathit \gamma}}{{\mathit p}}$ $\rightarrow$ ${{\mathit p}}{{\mathit \pi}^{0}}{{\mathit \eta}}$
SVARC 2014
PR C89 045205 Poles of Karlsruhe-Helsinki KH80 and KA84 Solutions Extracted by using the Laurent-Pietarinen Method
ANISOVICH 2012A
EPJ A48 15 Properties of Baryon Resonances from a Multichannel Partial Wave Analysis
VRANA 2000
PRPL 328 181 Baryon Resonance Extraction from ${{\mathit \pi}}$ N Data using a Unitary Multichannel Model
HOEHLER 1993
${{\mathit \pi}}{{\mathit N}}$ Newsletter 9 1 Determination of ${{\mathit \pi}}{{\mathit N}}$ Resonance Pole Parameters
CUTKOSKY 1980
Toronto Conf. 19 Pion $−$ Nucleon Partial Wave Analysis
Also
PR D20 2839 Pion Nucleon Partial Wave Amplitudes