PARAMETER $\Lambda $ IN ${{\mathit \omega}}$ $\rightarrow$ ${{\mathit \pi}^{0}}{{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$ DECAY

In the pole approximation the electromagnetic transition form factor for a resonance of mass $\mathit M$ is given by the expression: $\vert \mathit F\vert ^2$ = (1 $−$ ${{\mathit M}^{2}}/{{\mathit \Lambda}^{2}}){}^{-2}$, where for the parameter $\Lambda $ vector dominance predicts $\Lambda $ = $\mathit M_{p}$ $\approx{}$ 0.770 GeV. The ARNALDI 2009 measurement is in obvious conflict with this expectation. Note that for ${{\mathit \eta}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ decay ARNALDI 2009 and DZHELYADIN 1980 obtain the value of $\Lambda $ consistent with vector dominance.

PARAMETER $\Lambda $ IN ${{\mathit \omega}}$ $\rightarrow$ ${{\mathit \pi}^{0}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ DECAY

INSPIRE   JSON  (beta) PDGID:
M001LAM
VALUE (GeV) EVTS DOCUMENT ID TECN  COMMENT
$\bf{ 0.670 \pm0.006}$ OUR AVERAGE
$0.6707$ $\pm0.0039$ $\pm0.0056$ 1
ARNALDI
2016
NA60 400 GeV (${{\mathit p}}-{{\mathit A}}$) collisions
$0.668$ $\pm0.009$ $\pm0.003$ 3k 2
ARNALDI
2009
NA60 158$\mathit A$ In$−$In collisions
• • We do not use the following data for averages, fits, limits, etc. • •
$0.65$ $\pm0.03$
DZHELYADIN
1981B
CNTR 25$-$33 ${{\mathit \pi}^{-}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit \omega}}{{\mathit n}}$
1  ARNALDI 2016 reports $\Lambda {}^{-2}({{\mathit \omega}}$) = $2.223$ $\pm0.026$ $\pm0.037$ GeV${}^{-2}$ which we converted to the quoted $\Lambda $ value.
2  ARNALDI 2009 reports $\Lambda {}^{-2}({{\mathit \omega}}$) = $2.24$ $\pm0.06$ $\pm0.02$ GeV${}^{-2}$ which we converted to the quoted $\Lambda $ value.
References