${{\mathit \rho}{(2150)}}$ MASS

${{\mathit e}^{+}}{{\mathit e}^{-}}$ PRODUCED

INSPIRE   PDGID:
M032M3
VALUE (MeV) EVTS DOCUMENT ID TECN  COMMENT
• • We do not use the following data for averages, fits, limits, etc. • •
$2044$ $\pm31$ $\pm4$ 1
ABLIKIM
2023BQ
BES3 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit a}_{{{2}}}{(1320)}^{+}}{{\mathit \pi}^{-}}$ + c.c. $\rightarrow$ ${{\mathit \eta}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$
$2095$ $\pm4$ 2
ACHASOV
2023A
SND ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \omega}}{{\mathit \pi}^{0}}$
$2034$ $\pm13$ $\pm9$ 3
ABLIKIM
2021A
BES3 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \omega}}{{\mathit \pi}^{0}}$
$2111$ $\pm43$ $\pm25$ 4
ABLIKIM
2021X
BES3 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \eta}^{\,'}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$
$2255$ ${}^{+17}_{-18}$ ${}^{+50}_{-41}$ 1.8k 5
ABLIKIM
2020F
BES3 ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit \eta}}$
$2201$ $\pm19$ 6
LEES
2020
BABR ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit \gamma}}$
$2227$ $\pm9$ $\pm9$ 7
LEES
2020
RVUE ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}$
$2039$ $\pm8$ ${}^{+36}_{-18}$ 8
ABLIKIM
2019AQ
BES ${{\mathit J / \psi}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit \pi}^{0}}$
$2239.2$ $\pm7.1$ $\pm11.3$ 9
ABLIKIM
2019L
BES3 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}$
$2254$ $\pm22$ 10
LEES
2012G
BABR ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \gamma}}$
$2150$ $\pm40$ $\pm50$
AUBERT
2007AU
BABR 10.6 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit f}_{{{1}}}{(1285)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \gamma}}$
$1990$ $\pm80$
AUBERT
2007AU
BABR 10.6 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \eta}^{\,'}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \gamma}}$
$2153$ $\pm37$
BIAGINI
1991
RVUE ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ , ${{\mathit K}^{+}}{{\mathit K}^{-}}$
$2110$ $\pm50$ 11
CLEGG
1990
RVUE ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ 3( ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$) , 2( ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$)
1  From a fit to the cross section between 2.00 and 3.08 GeV with a coherent sum of a Breit-Wigner resonance and a non-resonant contribution. Could be another state.
2  From a vector dominance fit to the Born cross section between 1.05 and 2.0 GeV with ${{\mathit \rho}{(770)}}$, ${{\mathit \rho}{(1570)}}$, ${{\mathit \rho}{(1700)}}$, ${{\mathit \rho}{(2150)}}$. The fit also uses SND data from the VEPP-2M collider below 1.02 GeV and from LEES 2017H and ABLIKIM 2021A above 1.5 GeV.
3  From a fit to the cross section between 2.00 and 3.08 GeV with a coherent sum of Breit-Wigner amplitudes, including contributions from ${{\mathit \rho}{(770)}}$, ${{\mathit \rho}{(1450)}}$ and ${{\mathit \rho}{(1700)}}$. Could be another state.
4  From a Breit-Wigner fit to the Born cross section, including an $\mathit s$-dependent continuum amplitude.
5  Seen in ${{\mathit \psi}{(2S)}}$ decay with branching ratio ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit X}}{{\mathit \eta}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit \eta}}$ = ($21.7$ $\pm1.9$ ${}^{+7.7}_{-8.3}$) $ \times 10^{-6}$.
6  From the fit to the BABAR data of LEES 2013Q assuming a coherent sum of a single Breit-Wigner resonance and a nonresonant contribution. The resonance significance is 3.5 ${{\mathit \sigma}}$.
7  From the fit to the BABAR data of LEES 2013Q and BESIII data of ABLIKIM 2019L assuming a coherent sum of a single Breit-Wigner resonance and a nonresonant contribution.
8  Could also be another state. Seen in ${{\mathit J / \psi}}$ decay with branching ratio ${{\mathit J / \psi}}$ $\rightarrow$ ${{\mathit X}}{{\mathit \pi}^{0}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit \pi}^{0}}$ = ($6.7$ $\pm1.1$ ${}^{+2.2}_{-1.8}$) $ \times 10^{-6}$.
9  The observed structure can be due to both the ${{\mathit \phi}{(2170)}}$ and ${{\mathit \rho}{(2150)}}$.
10  Using the GOUNARIS 1968 parametrization of the pion form factor leaving the masses and widths of the ${{\mathit \rho}{(1450)}}$, ${{\mathit \rho}{(1700)}}$, and ${{\mathit \rho}{(2150)}}$ resonances as free parameters of the fit.
11  Includes ATKINSON 1985.
References