${{\mathit \rho}_{{{5}}}{(2350)}}$ MASS

${{\overline{\mathit p}}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit \pi}}{{\mathit \pi}}$ or ${{\overline{\mathit K}}}{{\mathit K}}$

INSPIRE   PDGID:
M033M1
VALUE (MeV) DOCUMENT ID TECN CHG  COMMENT
• • We do not use the following data for averages, fits, limits, etc. • •
$\sim$$2303$
HASAN
1994
RVUE ${{\overline{\mathit p}}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit \pi}}{{\mathit \pi}}$
$\sim$$2300$ 1
MARTIN
1980B
RVUE
$\sim$$2250$ 1
MARTIN
1980C
RVUE
$\sim$$2500$ 2
CARTER
1978B
CNTR 0 0.7$-$2.4 ${{\overline{\mathit p}}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit K}^{+}}$
$\sim$$2480$ 3
CARTER
1977
CNTR 0 0.7$-$2.4 ${{\overline{\mathit p}}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit \pi}}{{\mathit \pi}}$
1  $\mathit I(\mathit J{}^{P}) = 1(5{}^{-})$ from simultaneous analysis of ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit \pi}^{+}}$ and ${{\mathit \pi}^{0}}{{\mathit \pi}^{0}}$.
2  $\mathit I = 0()$; $\mathit J{}^{P} = 5{}^{-}$ from Barrelet-zero analysis.
3  $\mathit I(\mathit J{}^{P}) = 1(5{}^{-})$ from amplitude analysis.
References