${{\mathit \rho}{(1700)}}$ MASS

${{\mathit \pi}}{{\mathit \omega}}$ MODE

INSPIRE   PDGID:
M065M8
VALUE (MeV) EVTS DOCUMENT ID TECN  COMMENT
• • We do not use the following data for averages, fits, limits, etc. • •
$1723$ $\pm2$ 1
ACHASOV
2023A
SND ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \omega}}{{\mathit \pi}^{0}}$
$1708$ $\pm41$ 7815 2
ACHASOV
2013
SND $1.05 - 2.00$ ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{0}}{{\mathit \pi}^{0}}{{\mathit \gamma}}$
$1550\text{ to }1620 $ 3
ACHASOV
2000I
SND ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{0}}{{\mathit \pi}^{0}}{{\mathit \gamma}}$
$1580\text{ to }1710 $ 4
ACHASOV
2000I
SND ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{0}}{{\mathit \pi}^{0}}{{\mathit \gamma}}$
$1710$ $\pm90$
ACHASOV
1997
RVUE ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \omega}}{{\mathit \pi}^{0}}$
1  From a vector dominance fit to the Born cross section between 1.05 and 2.0 GeV with ${{\mathit \rho}{(770)}}$, ${{\mathit \rho}{(1570)}}$, ${{\mathit \rho}{(1700)}}$, ${{\mathit \rho}{(2150)}}$. The fit also uses SND data from the VEPP-2M collider below 1.02 GeV and from LEES 2017H and ABLIKIM 2021A above 1.5GeV.
2  From a phenomenological model based on vector meson dominance with the interfering ${{\mathit \rho}{(1450)}}$ and ${{\mathit \rho}{(1700)}}$ and their widths fixed at 400 and 250 MeV, respectively. Systematic uncertainty not estimated.
3  Taking into account both ${{\mathit \rho}{(1450)}}$ and ${{\mathit \rho}{(1700)}}$ contributions. Using the data of ACHASOV 2000I on ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \omega}}{{\mathit \pi}^{0}}$ and of EDWARDS 2000A on ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \omega}}{{\mathit \pi}^{-}}{{\mathit \nu}_{{{\tau}}}}$. ${{\mathit \rho}{(1450)}}$ mass and width fixed at 1400 MeV and 500 MeV respectively.
4  Taking into account the ${{\mathit \rho}{(1700)}}$ contribution only. Using the data of ACHASOV 2000I on ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \omega}}{{\mathit \pi}^{0}}$ and of EDWARDS 2000A on ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \omega}}{{\mathit \pi}^{-}}{{\mathit \nu}_{{{\tau}}}}$.
References