${{\boldsymbol \rho}{(1700)}}$ WIDTH

${{\boldsymbol \pi}}{{\boldsymbol \pi}}$ MODE INSPIRE search

VALUE (MeV) EVTS DOCUMENT ID TECN  COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • •
$268.98$ $\pm11.40$ 1
BARTOS
2017
RVUE ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$
$489.58$ $\pm16.95$ 2
BARTOS
2017A
RVUE ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$
$414.71$ $\pm119.48$ 3
BARTOS
2017A
RVUE ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit \pi}^{0}}{{\mathit \nu}_{{\tau}}}$
$109$ $\pm19$ 20K 4
LEES
2017C
BABR ${{\mathit J / \psi}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$
$310$ $\pm30$ ${}^{+25}_{-35}$ 63.5k 5
ABRAMOWICZ
2012
ZEUS ${{\mathit e}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit p}}$
$316$ $\pm26$ 6
LEES
2012G
BABR ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \gamma}}$
$164$ $\pm21$ ${}^{+89}_{-26}$ 5.4M 7, 8
FUJIKAWA
2008
BELL ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit \pi}^{0}}{{\mathit \nu}_{{\tau}}}$
$275$ $\pm45$ 9
ABELE
1997
CBAR ${{\overline{\mathit p}}}$ ${{\mathit n}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit \pi}^{0}}{{\mathit \pi}^{0}}$
$310$ $\pm40$ 9
BERTIN
1997C
OBLX 0.0 ${{\overline{\mathit p}}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$
$400$ $\pm100$
CLEGG
1994
RVUE ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$
$224$ $\pm22$
BISELLO
1989
DM2 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$
$242.5$ $\pm163.0$
DUBNICKA
1989
RVUE ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$
$620$ $\pm60$
GESHKENBEIN
1989
RVUE
$<315$ 10
ERKAL
1985
RVUE 20$-$70 ${{\mathit \gamma}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \pi}}$
$280$ ${}^{+30}_{-80}$
ABE
1984B
HYBR 20 ${{\mathit \gamma}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit p}}$
$230$ $\pm80$ 11
ASTON
1980
OMEG 20$-$70 ${{\mathit \gamma}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit p}}$2 ${{\mathit \pi}}$
$283$ $\pm14$ 12
ATIYA
1979B
SPEC 50 ${{\mathit \gamma}}$ ${}^{}\mathrm {C}$ $\rightarrow$ ${}^{}\mathrm {C}$ 2 ${{\mathit \pi}}$
$175$ ${}^{+98}_{-53}$
BECKER
1979
ASPK 17 ${{\mathit \pi}^{-}}{{\mathit p}}$ polarized
$232$ $\pm34$ 10
LANG
1979
RVUE
$340$ 10
MARTIN
1978C
RVUE 17 ${{\mathit \pi}^{-}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit n}}$
$300$ $\pm100$ 10
FROGGATT
1977
RVUE 17 ${{\mathit \pi}^{-}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit n}}$
$180$ $\pm50$ 13
HYAMS
1973
ASPK 17 ${{\mathit \pi}^{-}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit n}}$
1  Applies the Unitary $\&$ Analytic Model of the pion electromagnetic form factor of DUBNICKA 2010 to analyze the data of LEES 2012G and ABLIKIM 2016C.
2  Applies the Unitary $\&$ Analytic Model of the pion electromagnetic form factor of DUBNICKA 2010 to analyze the data of ACHASOV 2006 , AKHMETSHIN 2007 , AUBERT 2009AS, and AMBROSINO 2011A.
3  Applies the Unitary $\&$ Analytic Model of the pion electromagnetic form factor of DUBNICKA 2010 to analyze the data of FUJIKAWA 2008 .
4  From a Dalitz plot analysis in an isobar model with ${{\mathit \rho}{(1450)}}$ and ${{\mathit \rho}{(1700)}}$ masses and widths floating.
5  Using the KUHN 1990 parametrization of the pion form factor, neglecting ${{\mathit \rho}}−{{\mathit \omega}}$ interference.
6  Using the GOUNARIS 1968 parametrization of the pion form factor leaving the masses and widths of the ${{\mathit \rho}{(1450)}}$, ${{\mathit \rho}{(1700)}}$, and ${{\mathit \rho}{(2150)}}$ resonances as free parameters of the fit.
7  $\vert \mathit F_{{{\mathit \pi}}}(0)\vert ^2$ fixed to 1.
8  From the GOUNARIS 1968 parametrization of the pion form factor.
9  T-matrix pole.
10  From phase shift analysis of HYAMS 1973 data.
11  Simple relativistic Breit-Wigner fit with constant width.
12  An additional 40 MeV uncertainty in both the mass and width is present due to the choice of the background shape.
13  Included in BECKER 1979 analysis.
  References:
BARTOS 2017A
IJMP A32 1750154 The Mass and Width Differences of the Neutral and Charged ${{\mathit \rho}{(770)}}$, ${{\mathit \rho}{(1450 )}}$ and ${{\mathit \rho}{(1700)}}$ Mesons from ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ and ${{\mathit \nu}}{{\mathit \tau}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$ Processes
BARTOS 2017
PR D96 113004 What are the Correct ${{\mathit \rho}{(770)}^{0}}$ Meson Mass and Width Values?
LEES 2017C
PR D95 072007 Dalitz Plot Analyses of ${{\mathit J / \psi}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$ , ${{\mathit J / \psi}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit \pi}^{0}}$ , and ${{\mathit J / \psi}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit K}^{\pm}}{{\mathit \pi}^{\mp}}$ Produced via ${{\mathit e}^{+}}{{\mathit e}^{-}}$ Annihilation with Initial-State Radiation
ABRAMOWICZ 2012
EPJ C72 1869 Exclusive Electroproduction of Two Pions at HERA
LEES 2012G
PR D86 032013 Precise Measurement of the ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$( ${{\mathit \gamma}}$) Cross Section with the Initial-State Radiation Method at BABAR
FUJIKAWA 2008
PR D78 072006 High-Statistics Study of the Decay
ABELE 1997
PL B391 191 High Mass ${{\mathit \rho}}$ Meson States from ${{\overline{\mathit p}}}{{\mathit d}}$ Annihilation at Rest into ${{\mathit \pi}^{-}}{{\mathit \pi}^{0}}{{\mathit \pi}^{0}}{{\mathit p}}_{spect.}$
BERTIN 1997C
PL B408 476 Spin Parity Analysis of the Final State ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$ from ${{\overline{\mathit p}}}{{\mathit p}}$ Annihilation at Rest in Hydrogen Targets at Three Densities
CLEGG 1994
ZPHY C62 455 Higher Vector Meson States Produced in Electron-Positron Annihilation
BISELLO 1989
PL B220 321 The Pion Electromagnetic Formfactor in the Time-Like Energy Range 1.35 ${}\leq{}$ $\sqrt {s }{}\leq{}$ 2.4 GeV
DUBNICKA 1989
JP G15 1349 There is no Discrepancy between Different Pion Formfactor Data Sets
GESHKENBEIN 1989
ZPHY C45 351 Analysis of Experiments on Measurement of the Pion Electromagnetic Formfactor
ERKAL 1985
ZPHY C29 485 A Unified Treatment of the ${{\mathit \rho}}$ and ${{\mathit \rho}^{\,'}}$
ABE 1984B
PRL 53 751 Study of the ${{\mathit \rho}^{\,'}{(1600)}}$ Mass Region using ${{\mathit \gamma}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit p}}$ at 20 GeV
ASTON 1980
PL 92B 215 Observation of the ${{\mathit \rho}^{\,'}{(1600)}}$ in the Channel ${{\mathit \gamma}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit p}}$
ATIYA 1979B
PRL 43 1691 High Energy Photoproduction of ${{\mathit \rho}^{\,'}{(1600)}}$
BECKER 1979
NP B151 46 A Model Independent Partial Wave Analysis of the ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ System Produced at Low Four Momentum Transfer in the Reaction ${{\mathit \pi}^{-}}$ ${{\mathit p}}$ $↑$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit n}}$ at 17.2 ${\mathrm {GeV/}}\mathit c$
LANG 1979
PR D19 956 Determination of Resonance Parameters
MARTIN 1978C
ANP 114 1 How Imposing Analyticity on a ${{\mathit \pi}}{{\mathit \pi}}$ Phase Shift Analysis Can Reveal New Solutions, Explore Experimental Structures and Investigate the Possibility of New Resonances
FROGGATT 1977
NP B129 89 Phase Shift Analysis of ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ Scattering between 1.0 and 1.8 GeV Based on Fixed Momentum Transfer Analyticity. 2.
HYAMS 1973
NP B64 134 ${{\mathit \pi}}{{\mathit \pi}}$ Phase Shift Analysis from 600 to 1900 MeV