${{\mathit \phi}{(1680)}}$ WIDTH

${{\mathit e}^{+}}{{\mathit e}^{-}}$ PRODUCTION

INSPIRE   PDGID:
M067W1
VALUE (MeV) EVTS DOCUMENT ID TECN  COMMENT
$\bf{ 150 \pm50}$ OUR ESTIMATE  This is only an educated guess; the error given is larger than the error on the average of the published values.
• • We do not use the following data for averages, fits, limits, etc. • •
$150.8$ $\pm7.0$ 1
LICHARD
2023
RVUE ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \Upsilon}{(nS)}}$ $\rightarrow$ ${{\mathit \phi}}{{\mathit \eta}}{{\mathit \gamma}}$
$149$ $\pm12$ $\pm13$ 2
ZHU
2023
BELL ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \Upsilon}{(nS)}}$ $\rightarrow$ ${{\mathit \phi}}{{\mathit \eta}}{{\mathit \gamma}}$
$156$ $\pm5$ $\pm9$ 3
ZHU
2023A
RVUE ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \eta}}{{\mathit \phi}}$
$172$ $\pm8$ 4
ABLIKIM
2022L
BES3 $2.0 - 3.08$ ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit \pi}^{0}}$
$185$ ${}^{+30}_{-26}$ ${}^{+25}_{-47}$ 1.8k 5
ABLIKIM
2020F
BES3 ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit \eta}}$
$159$ $\pm32$ 6
ACHASOV
2020C
SND $1.3 - 2.0$ ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit \pi}^{0}}$
$103$ ${}^{+26}_{-24}$
ACHASOV
2019
SND ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}{{\mathit \eta}}$
$176$ $\pm23$ $\pm38$ 3k 7
IVANOV
2019A
CMD3 $1.59 - 2.007$ ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit \eta}}$
$300$ $\pm50$ 2k 8
ACHASOV
2018A
SND $1.3 - 2.0$ ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit K}_L^0}$ ${{\mathit \pi}^{0}}$
$165$ $\pm38$ $\pm70$ 6.2k 9
LEES
2014H
BABR ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit K}_L^0}$ ${{\mathit \gamma}}$
$300$ $\pm15$ $\pm37$ 10
LEES
2012F
BABR 10.6 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \phi}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \gamma}}$
$211$ $\pm14$ $\pm19$ 4.8k 11
SHEN
2009
BELL 10.6 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \gamma}}$
$322$ $\pm77$ $\pm160$ 12
AUBERT
2008S
BABR 10.6 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ hadrons
$139$ $\pm60$ 948 13
AKHMETSHIN
2003
CMD2 $1.05 - 1.38$ ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit K}_L^0}$ ${{\mathit K}_S^0}$
$300$ $\pm60$ 14
CLEGG
1994
RVUE ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}$, ${{\mathit K}_S^0}$ ${{\mathit K}}{{\mathit \pi}}$
$146$ $\pm55$ 367
BISELLO
1991C
DM2 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit K}^{\pm}}{{\mathit \pi}^{\mp}}$
$207$ $\pm45$ 15
BISELLO
1988B
DM2 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}$
$185$ $\pm22$ 16
BUON
1982
DM1 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ hadrons
$102$ $\pm36$ 17
MANE
1982
DM1 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit K}}{{\mathit \pi}}$
1  From a VDM fit to ZHU 2023 ${{\mathit \eta}}{{\mathit \phi}}{{\mathit \gamma}}$ data with two resonances, ${{\mathit \phi}{(1680)}}$, ${{\mathit \phi}{(2170)}}$, and a third resonance with mass $1850.7$ $\pm5.3$ MeV and width $25$ $\pm35$ MeV of 1.7 $\sigma $ statistical evidence.
2  From a fit using a vector meson dominance model with contributions from ${{\mathit \phi}{(1680)}}$, ${{\mathit \phi}{(2170)}}$ and non resonant contribution.
3  From the analysis of the combined measurements of ${\mathit \sigma (}$ ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \eta}}{{\mathit \phi}}{)}$ from BaBar, Belle, BESIII, CMD3.
4  From a partial wave amplitude analysis at $\sqrt {s }$ = 2.125 GeV which includes all the possible intermediate states that match $\mathit J{}^{PC}$ conservation in the subsequent two-body decay. The intermediate states are parameterized with the relativistic Breit-Wigner functions. Statistical error only.
5  Seen in ${{\mathit \psi}{(2S)}}$ decay with branching ratio ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit X}}{{\mathit \eta}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit \eta}}$ = ($12.0$ $\pm1.3$ ${}^{+6.5}_{-6.9}$) $ \times 10^{-6}$.
6  From a fit using a vector meson dominance model with contribution from ${{\mathit \rho}{(770)}}$, ${{\mathit \omega}{(782)}}$, ${{\mathit \phi}{(1020)}}$, ${{\mathit \omega}{(1420)}}$, ${{\mathit \rho}{(1450)}}$.
7  From a fit with coherent interference of the ${{\mathit \phi}{(1680)}}$ with a non-resonant contribution.
8  Assuming the ${{\mathit K}}{{\overline{\mathit K}}^{*}{(892)}}$ + c.c. dynamics. Systematic uncertainties not estimated.
9  Using a vector meson dominance model with contribution from ${{\mathit \phi}{(1020)}}$, ${{\mathit \phi}{(1680)}}$, and higher mass excitations of ${{\mathit \rho}{(770)}}$ and ${{\mathit \omega}{(782)}}$.
10  Using events with ${{\mathit \pi}}{{\mathit \pi}}$ invariant mass less than 0.85 GeV.
11  From a fit with two incoherent Breit-Wigners.
12  From the simultaneous fit to the ${{\mathit K}}{{\overline{\mathit K}}^{*}{(892)}}$ + c.c. and ${{\mathit \phi}}{{\mathit \eta}}$ data from AUBERT 2008S using the results of AUBERT 2007AK.
13  From the combined fit of AKHMETSHIN 2003 and MANE 1981 also including ${{\mathit \rho}}$, ${{\mathit \omega}}$, and ${{\mathit \phi}}$. Neither isospin nor flavor structure known.
14  Using BISELLO 1988B and MANE 1982 data.
15  From global fit including ${{\mathit \rho}}$, ${{\mathit \omega}}$, ${{\mathit \phi}}$ and ${{\mathit \rho}{(1700)}}$
16  From global fit of ${{\mathit \rho}}$, ${{\mathit \omega}}$, ${{\mathit \phi}}$ and their radial excitations to channels ${{\mathit \omega}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$, ${{\mathit K}^{+}}{{\mathit K}^{-}}$, ${{\mathit K}_S^0}$ ${{\mathit K}_L^0}$ , ${{\mathit K}_S^0}$ ${{\mathit K}^{\pm}}{{\mathit \pi}^{\mp}}$. Assume mass 1570 MeV and width 510 MeV for ${{\mathit \rho}}$ radial excitations, mass 1570 and width 500 MeV for ${{\mathit \omega}}$ radial excitation.
17  Fit to one channel only, neglecting interference with ${{\mathit \omega}}$, ${{\mathit \rho}{(1700)}}$.
References