${{\mathit \Upsilon}{(11020)}}$ WIDTH

INSPIRE   PDGID:
M093W
VALUE (MeV) DOCUMENT ID TECN  COMMENT
$\bf{ 24 {}^{+8}_{-6}}$ OUR AVERAGE
$23.8$ ${}^{+8.0}_{-6.8}$ ${}^{+0.7}_{-1.8}$ 1
MIZUK
2019
BELL ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \Upsilon}{(nS)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$
$27$ ${}^{+27}_{-11}$ ${}^{+5}_{-12}$ 2
MIZUK
2016
BELL ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit h}_{{{b}}}{(1P,2P)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$
• • We do not use the following data for averages, fits, limits, etc. • •
$35.1$ $\pm1.2$ 3
DONG
2020A
${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$
$39.3$ ${}^{+1.7}_{-1.6}$ ${}^{+1.3}_{-2.4}$ 4, 5
SANTEL
2016
BELL ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ hadrons
$61$ ${}^{+9}_{-19}$ ${}^{+2}_{-20}$ 6, 7
SANTEL
2016
BELL ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \Upsilon}{(1S,2S,3S)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$
$37$ $\pm3$ 8
AUBERT
2009E
BABR ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ hadrons
$61$ $\pm13$ $\pm22$
BESSON
1985
CLEO ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ hadrons
$90$ $\pm20$
LOVELOCK
1985
CUSB ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ hadrons
1  From a simultaneous fit to the ${{\mathit \Upsilon}{(nS)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$, $\mathit n$ = 1, 2, 3, cross sections at 28 energy points within $\sqrt {s }$ = $10.6 - 11.05$ GeV, including the initial-state radiation at ${{\mathit \Upsilon}{(10860)}}$.
2  From a simultaneous fit to the ${{\mathit h}_{{{b}}}{(nP)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$, $\mathit n$ = 1, 2 cross sections at 22 energy points within $\sqrt {s }$ = $10.77 - 11.02$ GeV to a pair of interfering Breit-Wigner amplitudes modified by phase space factors, with eight resonance parameters (a mass and width for each of ${{\mathit \Upsilon}{(10860)}}$ and ${{\mathit \Upsilon}{(11020)}}$, a single relative phase, a single relative amplitude, and two overall normalization factors, one for each $\mathit n$). The systematic error estimate is dominated by possible interference with a small nonresonant continuum amplitude.
3  From a fit to the dressed cross sections of AUBERT 2009E by BaBar and SANTEL 2016 by Belle above 10.68 GeV with a coherent sum of a continuum amplitude and three Breit-Wigner functions with constant widths.
4  From a fit to the total hadronic cross sections measured at 60 energy points within $\sqrt {s }$ = $10.82 - 11.05$ GeV to a pair of interfering Breit-Wigner amplitudes and two floating continuum amplitudes with 1/$\sqrt {s }$ dependence, one coherent with the resonances and one incoherent, with six resonance parameters (a mass, width, and an amplitude for each of ${{\mathit \Upsilon}{(10860)}}$ and ${{\mathit \Upsilon}{(11020)}}$, one relative phase, and one decoherence coefficient).
5  Not including uncertain and potentially large systematic errors due to assumed continuum amplitude 1/$\sqrt {s }$ dependence and related interference contributions.
6  From a simultaneous fit to the ${{\mathit \Upsilon}{(nS)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$, $\mathit n$=1, 2, 3, cross sections at 25energy points within $\sqrt {s }$ = $10.6 - 11.05$ GeV to a pair of interfering Breit-Wigner amplitudesmodified by phase space factors, with fourteen resonance parameters (a mass, width, and threeamplitudes for each of ${{\mathit \Upsilon}{(10860)}}$ and ${{\mathit \Upsilon}{(11020)}}$, a single universal relativephase, and three decoherence coefficients, one for each $\mathit n$). Continuum contributions weremeasured (and therefore fixed) to be zero.
7  Superseded by MIZUK 2019.
8  In a model where a flat non-resonant ${{\mathit b}}{{\overline{\mathit b}}}$-continuum is incoherently added to a second flat component interfering with two Breit-Wigner resonances. Systematic uncertainties not estimated.
References