${{\mathit \rho}{(1450)}}$ WIDTH

${{\mathit \pi}}{{\mathit \pi}}$ MODE

INSPIRE   PDGID:
M105W5
VALUE (MeV) EVTS DOCUMENT ID TECN  COMMENT
• • We do not use the following data for averages, fits, limits, etc. • •
$324.13$ $\pm12.01$ 1
BARTOS
2017
RVUE ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$
$492.17$ $\pm138.38$ 2
BARTOS
2017A
RVUE ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$
$340.87$ $\pm23.84$ 3
BARTOS
2017A
RVUE ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit \pi}^{0}}{{\mathit \nu}_{{\tau}}}$
$576$ $\pm29$ 20k 4
LEES
2017C
BABR ${{\mathit J / \psi}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$
$460$ $\pm30$ ${}^{+40}_{-45}$ 63.5k 5
ABRAMOWICZ
2012
ZEUS ${{\mathit e}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit p}}$
$427$ $\pm31$ 6
LEES
2012G
BABR ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \gamma}}$
$434$ $\pm16$ $\pm60$ 5.4M 7, 8
FUJIKAWA
2008
BELL ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit \pi}^{0}}{{\mathit \nu}_{{\tau}}}$
$468$ $\pm41$ 9
SCHAEL
2005C
ALEP ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit \pi}^{0}}{{\mathit \nu}_{{\tau}}}$
$455$ $\pm41$ 87k 7, 10
ANDERSON
2000A
CLE2 ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit \pi}^{0}}{{\mathit \nu}_{{\tau}}}$
$\sim$$374$ 11
ABELE
1999C
CBAR 0.0 ${{\overline{\mathit p}}}$ ${{\mathit d}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{-}}{{\mathit p}}$
$275$ $\pm10$
BERTIN
1998
OBLX $0.05 - 0.405$ ${{\overline{\mathit n}}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$
$343$ $\pm20$ 12
ABELE
1997
CBAR ${{\overline{\mathit p}}}$ ${{\mathit n}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit \pi}^{0}}{{\mathit \pi}^{0}}$
$310$ $\pm40$ 10
BERTIN
1997C
OBLX 0.0 ${{\overline{\mathit p}}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$
$236$ $\pm36$
BERTIN
1997D
OBLX 0.05 ${{\overline{\mathit p}}}$ ${{\mathit p}}$ $\rightarrow$ 2 ${{\mathit \pi}^{+}}$2 ${{\mathit \pi}^{-}}$
$269$ $\pm31$
BISELLO
1989
DM2 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$
$391$ $\pm70$
DUBNICKA
1989
RVUE ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$
$218$ $\pm46$ 13
KURDADZE
1983
OLYA $0.64 - 1.4$ ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$
1  Applies the Unitary $\&$ Analytic Model of the pion electromagnetic form factor of DUBNICKA 2010 to analyze the data of LEES 2012G and ABLIKIM 2016C.
2  Applies the Unitary $\&$ Analytic Model of the pion electromagnetic form factor of DUBNICKA 2010 to analyze the data of ACHASOV 2006 , AKHMETSHIN 2007 , AUBERT 2009AS, and AMBROSINO 2011A.
3  Applies the Unitary $\&$ Analytic Model of the pion electromagnetic form factor of DUBNICKA 2010 to analyze the data of FUJIKAWA 2008 .
4  From a Dalitz plot analysis in an isobar model with ${{\mathit \rho}{(1450)}}$ and ${{\mathit \rho}{(1700)}}$ masses and widths floating.
5  Using the KUHN 1990 parametrization of the pion form factor, neglecting ${{\mathit \rho}}−{{\mathit \omega}}$ interference.
6  Using the GOUNARIS 1968 parametrization of the pion form factor leaving the masses and widths of the ${{\mathit \rho}{(1450)}}$, ${{\mathit \rho}{(1700)}}$, and ${{\mathit \rho}{(2150)}}$ resonances as free parameters of the fit.
7  From the GOUNARIS 1968 parametrization of the pion form factor.
8  $\vert \mathit F_{{{\mathit \pi}}}(0)\vert ^2$ fixed to 1.
9  From the combined fit of the ${{\mathit \tau}^{-}}$ data from ANDERSON 2000A and SCHAEL 2005C and ${{\mathit e}^{+}}{{\mathit e}^{-}}$ data from the compilation of BARKOV 1985 , AKHMETSHIN 2004 , and ALOISIO 2005 . ${{\mathit \rho}{(1700)}}$ mass and width fixed at 1713 MeV and 235 MeV, respectively. Supersedes BARATE 1997M.
10  ${{\mathit \rho}{(1700)}}$ mass and width fixed at 1700 MeV and 235 MeV, respectively.
11  ${{\mathit \rho}{(1700)}}$ mass and width fixed at 1780 MeV and 275 MeV respectively.
12  T-matrix pole.
13  Using for ${{\mathit \rho}{(1700)}}$ mass and width $1600$ $\pm20$ and $300$ $\pm10$ MeV respectively.
References:
BARTOS 2017A
IJMP A32 1750154 The Mass and Width Differences of the Neutral and Charged ${{\mathit \rho}{(770)}}$, ${{\mathit \rho}{(1450 )}}$ and ${{\mathit \rho}{(1700)}}$ Mesons from ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ and ${{\mathit \nu}}{{\mathit \tau}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$ Processes
BARTOS 2017
PR D96 113004 What are the Correct ${{\mathit \rho}{(770)}^{0}}$ Meson Mass and Width Values?
LEES 2017C
PR D95 072007 Dalitz Plot Analyses of ${{\mathit J / \psi}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$ , ${{\mathit J / \psi}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit \pi}^{0}}$ , and ${{\mathit J / \psi}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit K}^{\pm}}{{\mathit \pi}^{\mp}}$ Produced via ${{\mathit e}^{+}}{{\mathit e}^{-}}$ Annihilation with Initial-State Radiation
ABRAMOWICZ 2012
EPJ C72 1869 Exclusive Electroproduction of Two Pions at HERA
LEES 2012G
PR D86 032013 Precise Measurement of the ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$( ${{\mathit \gamma}}$) Cross Section with the Initial-State Radiation Method at BABAR
FUJIKAWA 2008
PR D78 072006 High-Statistics Study of the Decay
SCHAEL 2005C
PRPL 421 191 Branching Ratios and Spectral Functions of ${{\mathit \tau}}$ Decays: Final ALEPH Measurements and Physics Implications
ANDERSON 2000A
PR D61 112002 Hadronic Structure in the Decay ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit \pi}^{0}}{{\mathit \nu}_{{\tau}}}$
ABELE 1999C
PL B450 275 ${{\overline{\mathit p}}}{{\mathit d}}$ Annihilation at Rest into ${{\mathit \pi}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit p}}_{spect.}$
BERTIN 1998
PR D57 55 Study of the ${{\mathit f}_{{0}}{(1500)}}/{{\mathit f}_{{2}}{(1565)}}$ Production in the Exclusive Annihilation ${{\overline{\mathit n}}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ in Flight
ABELE 1997
PL B391 191 High Mass ${{\mathit \rho}}$ Meson States from ${{\overline{\mathit p}}}{{\mathit d}}$ Annihilation at Rest into ${{\mathit \pi}^{-}}{{\mathit \pi}^{0}}{{\mathit \pi}^{0}}{{\mathit p}}_{spect.}$
BERTIN 1997C
PL B408 476 Spin Parity Analysis of the Final State ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$ from ${{\overline{\mathit p}}}{{\mathit p}}$ Annihilation at Rest in Hydrogen Targets at Three Densities
BERTIN 1997D
PL B414 220 Study of the ${{\overline{\mathit p}}}$ ${{\mathit p}}$ $\rightarrow$ 2 ${{\mathit \pi}^{+}}$2 ${{\mathit \pi}^{-}}$ Annihilation from S States
BISELLO 1989
PL B220 321 The Pion Electromagnetic Formfactor in the Time-Like Energy Range 1.35 ${}\leq{}$ $\sqrt {s }{}\leq{}$ 2.4 GeV
DUBNICKA 1989
JP G15 1349 There is no Discrepancy between Different Pion Formfactor Data Sets
KURDADZE 1983
JETPL 37 733 Measurement of the Pion Formfactor at 640 ${}\leq{}$ $\sqrt {s }{}\leq{}$ 1400 MeV