${{\mathit D}_{{{s1}}}{(2536)}^{\pm}}$ WIDTH

INSPIRE   PDGID:
M121W
VALUE (MeV) CL% EVTS DOCUMENT ID TECN  COMMENT
$\bf{ 0.92 \pm0.05}$ OUR AVERAGE
$1.7$ $\pm1.2$ $\pm0.6$ 24 1
ABLIKIM
2019P
BES3 4.6 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit D}_{{{s}}}^{+}}{{\overline{\mathit D}}^{0}}{{\mathit K}^{-}}$
$0.92$ $\pm0.03$ $\pm0.04$ 8038 2
LEES
2011B
BABR 10.6 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit D}^{*+}}{{\mathit K}_S^0}$ ${{\mathit X}}$
• • We do not use the following data for averages, fits, limits, etc. • •
$0.75$ $\pm0.23$ 116 3
AUSHEV
2011
BELL ${{\mathit B}}$ $\rightarrow$ ${{\mathit D}_{{{s1}}}{(2536)}^{+}}{{\mathit D}^{(*)}}$
$\text{< 2.5}$ 95 193
AUBERT
2006P
BABR 10.6 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit D}_{{{s}}}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit X}}$
$\text{< 3.2}$ 90 75
FRABETTI
1994B
E687 ${{\mathit \gamma}}$ ${}^{}\mathrm {Be}$ $\rightarrow$ ${{\mathit D}^{*+}}{{\mathit K}^{0}}$ X, ${{\mathit D}^{*0}}{{\mathit K}^{+}}$ X
$\text{< 2.3}$ 90
ALEXANDER
1993
CLEO ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit D}^{*0}}{{\mathit K}^{+}}$ X
$\text{< 3.9}$ 90
ALBRECHT
1992R
ARG 10.4 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit D}^{*0}}{{\mathit K}^{+}}$ X
$\text{< 5.44}$ 90
AVERY
1990
CLEO ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit D}^{*+}}{{\mathit K}^{0}}$ X
$\text{< 4.6}$ 90
ALBRECHT
1989E
ARG ${{\mathit D}_{{{s1}}}^{*}}$ $\rightarrow$ ${{\mathit D}^{*}{(2010)}}{{\mathit K}^{0}}$
1  From a fit of the ${{\mathit D}_{{{s}}}^{+}}$ recoil mass distribution with an incoherent sum of the ${\mathit S}{\mathrm -wave}$ and ${\mathit S}{\mathrm -wave}$ Breit-Wigner line shapes.
2  Assuming ${\mathit S}{\mathrm -wave}$ decay of the ${{\mathit D}_{{{s1}}}{(2536)}}$ to ${{\mathit D}^{*+}}{{\mathit K}_S^0}$ , using a Breit-Wigner line shape corresponding to L=0.
3  Systematic uncertainties not evaluated.
References