${{\mathit f}_{{{0}}}{(2020)}}$ T-MATRIX POLE $\sqrt {\mathit s }$

INSPIRE   PDGID:
M156PP
Note that $\Gamma $ = $−$2 Im($\sqrt {s }$).
VALUE (MeV) DOCUMENT ID TECN  COMMENT
$\bf{ (1870 - 2080) − {\mit i} (120 - 240)}$ OUR ESTIMATE
$(2038 \pm48) − {\mit i} (156 \pm41)$ 1
RODAS
2022
RVUE ${{\mathit J / \psi}{(1S)}}$ $\rightarrow$ ${{\mathit \gamma}}$ (${{\mathit \pi}}{{\mathit \pi}}$ , ${{\mathit K}}{{\overline{\mathit K}}}$)
$(1925 \pm25) − {\mit i} (160 \pm18)$
SARANTSEV
2021
RVUE ${{\mathit J / \psi}{(1S)}}$ $\rightarrow$ ${{\mathit \gamma}}$ (${{\mathit \pi}}{{\mathit \pi}}$ , ${{\mathit K}}{{\overline{\mathit K}}}$ , ${{\mathit \eta}}{{\mathit \eta}}$ , ${{\mathit \omega}}{{\mathit \phi}}$)
$(1910 \pm50) − {\mit i} (199 \pm40)$ 2
ROPERTZ
2018
RVUE ${{\overline{\mathit B}}_{{{s}}}^{0}}$ $\rightarrow$ ${{\mathit J / \psi}}$( ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $/$ ${{\mathit K}^{+}}{{\mathit K}^{-}}$)
$(1992 \pm16) − {\mit i} (221 \pm30)$ 3
BARBERIS
2000C
450 ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit p}_{{{f}}}}$4 ${{\mathit \pi}}{{\mathit p}_{{{s}}}}$
$(2020 \pm35)−{\mit i}(205 \pm25)$
BARBERIS
1997B
OMEG 450 ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit p}}{{\mathit p}}$2( ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$)
1  T-matrix pole from coupled channel K-matrix fit to data on ${{\mathit J / \psi}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \pi}^{0}}{{\mathit \pi}^{0}}$ (ABLIKIM 2015AE) and ${{\mathit J / \psi}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit K}_S^0}$ ${{\mathit K}_S^0}$ (ABLIKIM 2018AA).
2  T-matrix pole of 3 channel unitary model fit to data from AAIJ 2014BR and AAIJ 2017V extracted using Pade approximants.
3  Average between ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$2 ${{\mathit \pi}^{0}}$ and 2(${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$).
References