${{\mathit \chi}_{{{c1}}}{(3872)}}$ WIDTH FROM ${{\overline{\mathit D}}^{*0}}{{\mathit D}^{0}}$ MODE

INSPIRE   JSON  (beta) PDGID:
M176WD0
VALUE (MeV) EVTS DOCUMENT ID TECN  COMMENT
• • We do not use the following data for averages, fits, limits, etc. • •
$5.2$ ${}^{+2.2}_{-1.5}$ $\pm0.4$ 1
HIRATA
2023
BELL ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}^{0}}{{\overline{\mathit D}}^{*0}}{{\mathit K}^{0}}$, ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit D}^{0}}{{\overline{\mathit D}}^{*0}}{{\mathit K}^{+}}$
$3.9$ ${}^{+2.8}_{-1.4}$ ${}^{+0.2}_{-1.1}$ 50 2
AUSHEV
2010
BELL ${{\mathit B}}$ $\rightarrow$ ${{\overline{\mathit D}}^{*0}}{{\mathit D}^{0}}{{\mathit K}}$
$3.0$ ${}^{+1.9}_{-1.4}$ $\pm0.9$ $33$ $\pm6$
AUBERT
2008B
BABR ${{\mathit B}}$ $\rightarrow$ ${{\overline{\mathit D}}^{*0}}{{\mathit D}^{0}}{{\mathit K}}$
1  From a fit of a Breit-Wigner function with energy dependent width.
2  With a measured value of B(${{\mathit B}}$ $\rightarrow$ ${{\mathit \chi}_{{{c1}}}{(3872)}}{{\mathit K}}$) ${\times }$ B(${{\mathit \chi}_{{{c1}}}{(3872)}}$ $\rightarrow$ ${{\mathit D}^{*0}}{{\overline{\mathit D}}^{0}}$) = ($0.80$ $\pm0.20$ $\pm0.10$) $ \times 10^{-4}$, assumed to be equal for both charged and neutral modes.
References