${{\mathit D}_{{{3}}}^{*}{(2750)}}$ WIDTH

INSPIRE   PDGID:
M203W
VALUE (MeV) EVTS DOCUMENT ID TECN CHG  COMMENT
$\bf{ 66 \pm5}$ OUR AVERAGE
$66$ $\pm10$ $\pm14$ 79k 1
AAIJ
2020D
LHCB ${{\mathit B}^{-}}$ $\rightarrow$ ${{\mathit D}^{*+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{-}}$
$95.3$ $\pm9.6$ $\pm34.0$ 28k 2
AAIJ
2016AH
LHCB ${{\mathit B}^{-}}$ $\rightarrow$ ${{\mathit D}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{-}}$
$105$ $\pm18$ $\pm24$ 3
AAIJ
2015Y
LHCB ${{\mathit B}^{0}}$ $\rightarrow$ ${{\overline{\mathit D}}^{0}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$
$74.4$ $\pm3.4$ $\pm37.0$ 14k
AAIJ
2013CC
LHCB 0 ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit D}^{*+}}{{\mathit \pi}^{-}}{{\mathit X}}$
$74.4$ $\pm3.4$ $\pm19.1$ 56k
AAIJ
2013CC
LHCB 0 ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit D}^{+}}{{\mathit \pi}^{-}}{{\mathit X}}$
$66.7$ $\pm6.6$ $\pm10.5$ 20k
AAIJ
2013CC
LHCB + ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit D}^{0}}{{\mathit \pi}^{+}}{{\mathit X}}$
$71$ $\pm6$ $\pm11$ 23.5k 4
DEL-AMO-SANCH..
2010P
BABR ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit D}^{*+}}{{\mathit \pi}^{-}}{{\mathit X}}$
$60.9$ $\pm5.1$ $\pm3.6$ 11.3k 4
DEL-AMO-SANCH..
2010P
BABR ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit D}^{+}}{{\mathit \pi}^{-}}{{\mathit X}}$
• • We do not use the following data for averages, fits, limits, etc. • •
$154$ $\pm27$ $\pm16$ 5
AAIJ
2015Y
LHCB ${{\mathit B}^{0}}$ $\rightarrow$ ${{\overline{\mathit D}}^{0}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$
1  From a full four-body amplitude analysis of the ${{\mathit B}^{-}}$ $\rightarrow$ ${{\mathit D}^{*+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{-}}$ decay.
2  From the amplitude analysis in the model describing the ${{\mathit D}^{+}}{{\mathit \pi}^{-}}$ wave together with virtual contributions from the ${{\mathit D}^{*}{(2007)}^{0}}$ and ${{\mathit B}^{*0}}$ states, and components corresponding to the ${{\mathit D}_{{{2}}}^{*}{(2460)}^{0}}$, ${{\mathit D}_{{{1}}}^{*}{(2680)}^{0}}$, ${{\mathit D}_{{{3}}}^{*}{(2760)}^{0}}$, and ${{\mathit D}_{{{2}}}^{*}{(3000)}^{0}}$ resonances.
3  Modeling the ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{\mathit S}{\mathrm -wave}$ with the Isobar formalism.
4  The states observed in the ${{\mathit D}^{*}}{{\mathit \pi}}$ and ${{\mathit D}}{{\mathit \pi}}$ final states are not necessarily the same.
5  Modeling the ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{\mathit S}{\mathrm -wave}$ with the K-matrix formalism.
References