${{\mathit a}_{{{0}}}{(1710)}}$ WIDTH

INSPIRE   PDGID:
M263W
VALUE (MeV) DOCUMENT ID TECN  COMMENT
$\bf{ 107 \pm15}$ OUR AVERAGE
$134$ $\pm17$ $\pm61$ 1
AAIJ
2023AH
LHCB ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit K}^{+}}$( ${{\mathit K}_S^0}$ ${{\mathit K}}{{\mathit \pi}}$)
$97$ $\pm22$ $\pm15$ 2
ABLIKIM
2022AH
BES3 ${{\mathit D}_{{{s}}}^{+}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit K}^{+}}{{\mathit \pi}^{0}}$
$110$ $\pm15$ $\pm11$
LEES
2021A
BABR ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \eta}}$
1  From Dalitz plot analyses of ${{\mathit \eta}_{{{c}}}{(1S,2S)}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit K}^{+}}{{\mathit \pi}^{-}}$ + c.c..
2  Observed to decay into ${{\mathit K}_S^0}$ ${{\mathit K}^{+}}$ in a Breit-Wigner amplitude analysis involving ${{\mathit D}_{{{s}}}^{+}}$ decays into ${{\overline{\mathit K}}^{*}{(892)}^{0}}{{\mathit K}^{+}}$, ${{\overline{\mathit K}}^{*}{(892)}^{+}}{{\mathit K}_S^0}$ , ${{\overline{\mathit K}}^{*}{(1410)}^{0}}{{\mathit K}^{+}}$, ${{\mathit a}_{{{0}}}{(980)}^{+}}{{\mathit \pi}^{0}}$, and ${{\mathit a}_{{{0}}}{(1817)}^{+}}{{\mathit \pi}^{0}}$.
References