$\mathbf {B( {{\mathit J / \psi}} \rightarrow {{\mathit \gamma}} {{\mathit X}{(2600)}}) {\times } B( {{\mathit X}{(2600)}} \rightarrow {{\mathit X}{(1540)}} {{\mathit \eta}^{\,'}}) {\times } B( {{\mathit X}{(1540)}} \rightarrow {{\mathit \pi}^{+}} {{\mathit \pi}^{-}})}$

INSPIRE   PDGID:
M300A03
VALUE ($ 10^{-5} $) DOCUMENT ID TECN  COMMENT
$2.69$ $\pm0.19$ ${}^{+0.38}_{-1.21}$ 1
ABLIKIM
2022G
BES3 ${{\mathit J / \psi}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \eta}^{\,'}}$
1  The ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ mass spectrum is described by a coherent sum of two Breit-Wigner resonances, ${{\mathit f}_{{{0}}}{(1500)}}$ and a new ${{\mathit X}{(1540)}}$ with mass $1540.2$ $\pm7.0$ ${}^{+36.3}_{-6.1}$ MeV and width $157$ $\pm19$ ${}^{+11}_{-77}$ MeV.
References