$\mathbf {{{\mathit \psi}{(4500)}}}$ $\mathit I{}^{G}(\mathit J{}^{PC}) = 0{}^{-}(1{}^{--})$

INSPIRE   JSON  (beta) PDGID:
M300K39
MASS ${\mathrm {(MeV)}}$ WIDTH ${\mathrm {(MeV)}}$ DOCUMENT ID TECN  COMMENT
$ 4544.2 \pm18.7 \pm1.7 $ $116.1 \pm33.5 \pm1.7$ 1
ABLIKIM
2024D
BES3 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \omega}}{{\mathit \gamma}}{{\mathit J / \psi}}$
$ 4469.1 \pm26.2 \pm3.6 $ $246.3 \pm36.7 \pm9.4$ 2
ABLIKIM
2023X
BES3 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit D}^{*0}}{{\mathit D}^{*-}}{{\mathit \pi}^{+}}$
$ 4484.7 \pm13.3 \pm24.1 $ $111.1 \pm30 \pm15.2$ 3
ABLIKIM
2022AU
BES3 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit J / \psi}}$
1  Assuming one single Breit-Wigner resonance in ${{\mathit \omega}}{{\mathit \chi}_{{{c2}}}{(1P)}}$ (${{\mathit \chi}_{{{c2}}}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit J / \psi}}$). Measured ${\Gamma}_{\mathrm {{\mathit e}} {{\mathit e}}}\cdot{}B({{\mathit \omega}}{{\mathit \chi}_{{{c1}}}{(1P)}}$) = $1.86$ $\pm0.32$ $\pm0.13$ eV.
2  From a cross-section measurement of ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit D}^{*0}}{{\mathit D}^{*-}}{{\mathit \pi}^{+}}$ between 4.189 and 4.951 GeV, assuming a coherent sum of 3 Breit-Wigner resonances plus a continuum amplitude. $\Gamma ({{\mathit e}^{+}}{{\mathit e}^{-}})\cdot{}B({{\mathit D}^{*0}}{{\mathit D}^{*-}}{{\mathit \pi}^{+}}$) = $107 - 1744$ eV depending on solutions I $-$ VIII with the same fit qualities. The two other resonances have masses (widths) $4209.6$ $\pm7.5$ ($81.6$ $\pm19.9$) MeV and $4675.3$ $\pm29.7$ ($218.3$ $\pm73.5$) MeV.
3  ABLIKIM 2022AU cross sections analysis of the process ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit J / \psi}}$ at c.m. energies $4.127 - 4.600$ GeV from 15.6 ${\mathrm {fb}}{}^{-1}$ of data.
References