${\mathit {\mathit c}}$-QUARK MASS

INSPIRE   PDGID:
Q004M
The ${{\mathit c}}$-quark mass corresponds to the “running” mass ${\mathit m}_{{{\mathit c}}}$ ($\mu $ = ${\mathit m}_{{{\mathit c}}}$) in the $\overline{\rm{}MS}$ scheme. We have converted masses in other schemes to the $\overline{\rm{}MS}$ scheme using two-loop QCD perturbation theory with ${{\mathit \alpha}_{{{s}}}}({{\mathit \mu}}={\mathit m}_{{{\mathit c}}}$) = $0.38$ $\pm0.03$. The value $1.2730$ $\pm0.0046$ (GeV) for the $\overline{\rm{}MS}$ mass corresponds to $1.67$ $\pm0.07$ GeV for the pole mass (see the “Note on Quark Masses'').
$\overline{\rm{}MS}$ MASS (GeV) DOCUMENT ID TECN
$\bf{ 1.2730 \pm0.0046}$ OUR EVALUATION  See the ideogram below.
$1.316$ $\pm0.022$ ${}^{+0.019}_{-0.010}$ 1
ALEXANDROU
2021
LATT
$1.296$ $\pm0.019$ 2
HEITGER
2021
LATT
$1.2723$ $\pm0.0078$ 3
HATTON
2020
LATT
$1.266$ $\pm0.006$ 4
NARISON
2020
THEO
$1.290$ ${}^{+0.077}_{-0.053}$ 5
ABRAMOWICZ
2018
HERA
$1.273$ $\pm0.010$ 6
BAZAVOV
2018
LATT
$1.2737$ $\pm0.0077$ 7
LYTLE
2018
LATT
$1.223$ $\pm0.033$ 8
PESET
2018
THEO
$1.279$ $\pm0.008$ 9
CHETYRKIN
2017
THEO
$1.272$ $\pm0.008$ 10
ERLER
2017
THEO
$1.246$ $\pm0.023$ 11
KIYO
2016
THEO
$1.288$ $\pm0.020$ 12
DEHNADI
2015
THEO
$1.348$ $\pm0.046$ 13
CARRASCO
2014
LATT
$1.24$ $\pm0.03$ ${}^{+0.03}_{-0.07}$ 14
ALEKHIN
2013
THEO
$1.159$ $\pm0.075$ 15
SAMOYLOV
2013
NOMD
$1.278$ $\pm0.009$ 16
BODENSTEIN
2011
THEO
$1.28$ ${}^{+0.07}_{-0.06}$ 17
LASCHKA
2011
THEO
$1.196$ $\pm0.059$ $\pm0.050$ 18
AUBERT
2010A
BABR
$1.25$ $\pm0.04$ 19
SIGNER
2009
THEO
• • We do not use the following data for averages, fits, limits, etc. • •
$1.263$ $\pm0.014$ 20
NARISON
2018A
THEO
$1.264$ $\pm0.006$ 21
NARISON
2018B
THEO
$1.335$ $\pm0.043$ ${}^{+0.040}_{-0.011}$ 22
BERTONE
2016
THEO
$1.2715$ $\pm0.0095$ 23
CHAKRABORTY
2015
LATT
$1.26$ $\pm0.05$ $\pm0.04$ 24
ABRAMOWICZ
2013C
COMB
$1.282$ $\pm0.011$ $\pm0.022$ 25
DEHNADI
2013
THEO
$1.286$ $\pm0.066$ 26
NARISON
2013
THEO
$1.36$ $\pm0.04$ $\pm0.10$ 27
ALEKHIN
2012
THEO
$1.261$ $\pm0.016$ 28
NARISON
2012A
THEO
$1.01$ $\pm0.09$ $\pm0.03$ 29
ALEKHIN
2011
THEO
$1.28$ $\pm0.04$ 30
BLOSSIER
2010
LATT
$1.299$ $\pm0.026$ 31
BODENSTEIN
2010
THEO
$1.273$ $\pm0.006$ 32
MCNEILE
2010
LATT
$1.261$ $\pm0.018$ 33
NARISON
2010
THEO
$1.279$ $\pm0.013$ 34
CHETYRKIN
2009
THEO
$1.268$ $\pm0.009$ 35
ALLISON
2008
LATT
$1.286$ $\pm0.013$ 36
KUHN
2007
THEO
$1.295$ $\pm0.015$ 37
BOUGHEZAL
2006
THEO
$1.24$ $\pm0.09$ 38
BUCHMUELLER
2006
THEO
$1.224$ $\pm0.017$ $\pm0.054$ 39
HOANG
2006
THEO
$1.33$ $\pm0.10$ 40
AUBERT
2004X
THEO
$1.29$ $\pm0.07$ 41
HOANG
2004
THEO
$1.319$ $\pm0.028$ 42
DEDIVITIIS
2003
LATT
$1.19$ $\pm0.11$ 43
EIDEMULLER
2003
THEO
$1.289$ $\pm0.043$ 44
ERLER
2003
THEO
$1.26$ $\pm0.02$ 45
ZYABLYUK
2003
THEO
1  ALEXANDROU 2021 determines the quark mass using a lattice calculation of the meson and baryon masses with a twisted mass fermion action. We have converted ${{\overline{\mathit m}}_{{{c}}}}$(3 GeV) = $1.036$ $\pm0.017$ ${}^{+0.015}_{-0.008}$ to ${{\overline{\mathit m}}_{{{c}}}}({{\overline{\mathit m}}_{{{c}}}}$). The simulations are carried out using 2+1+1 dynamical quarks with ${\mathit m}_{{{\mathit u}}}$ = ${\mathit m}_{{{\mathit d}}}{}\not={\mathit m}_{{{\mathit s}}}{}\not={\mathit m}_{{{\mathit c}}}$, including gauge ensembles close to the physical pion point.
2  HEITGER 2021 determines the charm quark mass using a ${{\mathit n}_{{{f}}}}$ = 2+1 flavor lattice QCD simulation with non-perturbatively O(a) improved Wilson fermions. They also determine ${{\overline{\mathit m}}_{{{c}}}}$(3 GeV) = $1.007$ $\pm0.016$ GeV.
3  HATTON 2020 determines the charm quark mass with a lattice QCD + quenched QED simulation using the HISQ action and including ${{\mathit n}_{{{f}}}}$ = 2+1+1 flavors of sea quarks. ${\mathit m}_{{{\mathit c}}}$ is tuned from the ${{\mathit J / \psi}}$ meson mass giving ${{\overline{\mathit m}}_{{{c}}}}$(3 GeV) = $0.9841$ $\pm0.0051$ GeV.
4  NARISON 2020 determines the quark mass using QCD Laplace sum rules from the ${{\mathit B}_{{{c}}}}$ mass, combined with previous determinations of the QCD condensates and ${\mathit {\mathit c}}$ and ${\mathit {\mathit b}}$ masses.
5  ABRAMOWICZ 2018 determine ${{\overline{\mathit m}}_{{{c}}}}({{\overline{\mathit m}}_{{{c}}}}$) = $1.290$ ${}^{+0.046}_{-0.041}{}^{+0.062}_{-0.014}{}^{+0.003}_{-0.031}$ from the production of ${\mathit {\mathit c}}$ quarks in ${{\mathit e}}{{\mathit p}}$ collisions at HERA using combined H1 and ZEUS data. The experimental/fitting errors, and those from modeling and parameterization have been combined in quadrature.
6  BAZAVOV 2018 determine the quark masses using a lattice computation with staggered fermions and four active quark flavors.
7  LYTLE 2018 combined with CHAKRABORTY 15 determine ${{\overline{\mathit m}}_{{{c}}}}$(3 GeV) = 0.9874(48) GeV from a lattice simulation with ${{\mathit n}_{{{f}}}}$ = 2+1+1 flavors. They also determine the quoted value ${{\overline{\mathit m}}_{{{c}}}}({{\overline{\mathit m}}_{{{c}}}}$) for ${{\mathit n}_{{{f}}}}$ = 4 dynamical flavors.
8  PESET 2018 determine ${{\overline{\mathit m}}_{{{c}}}}({{\overline{\mathit m}}_{{{c}}}}$) and ${{\overline{\mathit m}}_{{{b}}}}({{\overline{\mathit m}}_{{{b}}}}$) using an N3LO calculation of the ${{\mathit \eta}_{{{c}}}}$, ${{\mathit \eta}_{{{b}}}}$ and ${{\mathit B}_{{{c}}}}$ masses.
9  CHETYRKIN 2017 determine ${{\overline{\mathit m}}_{{{c}}}}({{\mathit \mu}}$ = 3 GeV) = $0.993$ $\pm0.008$ GeV and ${{\overline{\mathit m}}_{{{c}}}}({{\overline{\mathit m}}_{{{c}}}}$) from a four-loop sum-rule computation of the cross-section for ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ hadrons in the charm threshold region.
10  ERLER 2017 determine ${{\overline{\mathit m}}_{{{c}}}}({{\overline{\mathit m}}_{{{c}}}}$) = $1.272$ $\pm0.008$ GeV from a three-loop QCD sum-rule computation of the vector current correlator. This result is for fixed ${{\mathit \alpha}_{{{s}}}}(M_{Z}$) = 0.1182. Including an ${{\mathit \alpha}_{{{s}}}}$ uncertainty of $\pm0.0016$, the charm mass error increases from 8 to 9 MeV.
11  KIYO 2016 determine ${{\overline{\mathit m}}_{{{c}}}}({{\overline{\mathit m}}_{{{c}}}}$) from the ${{\mathit J / \psi}{(1S)}}$ mass at order ${{\mathit \alpha}_{{{s}}}^{3}}$ (N3LO).
12  DEHNADI 2015 determine ${{\overline{\mathit m}}_{{{c}}}}({{\overline{\mathit m}}_{{{c}}}}$) using sum rules for ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ hadrons at order ${{\mathit \alpha}_{{{s}}}^{3}}$ (N3LO), and fitting to both experimental data and lattice results.
13  CARRASCO 2014 is a lattice QCD computation of light quark masses using 2 + 1 + 1 dynamical quarks, with ${{\mathit m}_{{{u}}}}$ = ${{\mathit m}_{{{d}}}}{}\not=$ ${{\mathit m}_{{{s}}}}{}\not=$ ${{\mathit m}_{{{c}}}}$. The ${\mathit {\mathit u}}$ and ${\mathit {\mathit d}}$ quark masses are obtained separately by using the ${{\mathit K}}$ meson mass splittings and lattice results for the electromagnetic contributions.
14  ALEKHIN 2013 determines ${\mathit m}_{{{\mathit c}}}$ from charm production in deep inelastic scattering at HERA using approximate NNLO QCD.
15  SAMOYLOV 2013 determines ${\mathit m}_{{{\mathit c}}}$ from a study of charm dimuon production in neutrino-iron scattering using the NLO QCD result for the charm quark production cross section.
16  BODENSTEIN 2011 determine ${{\overline{\mathit m}}_{{{c}}}}$(3 GeV) = $0.987$ $\pm0.009$ GeV and ${{\overline{\mathit m}}_{{{c}}}}({{\overline{\mathit m}}_{{{c}}}}$) = $1.278$ $\pm0.009$ GeV using QCD sum rules for the charm quark vector current correlator.
17  LASCHKA 2011 determine the ${{\mathit c}}$ mass from the charmonium spectrum. The theoretical computation uses the heavy potential to order 1/${\mathit m}_{{{\mathit Q}}}$ obtained by matching the short-distance perturbative result onto lattice QCD result at larger scales.
18  AUBERT 2010A determine the ${\mathit {\mathit b}}$- and ${\mathit {\mathit c}}$-quark masses from a fit to the inclusive decay spectra in semileptonic ${{\mathit B}}$ decays in the kinetic scheme (and convert it to the $\overline{\rm{}MS}$ scheme).
19  SIGNER 2009 determines the ${\mathit {\mathit c}}$-quark mass using non-relativistic sum rules to analyze the ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit c}}{{\overline{\mathit c}}}$ cross-section near threshold. Also determine the PS mass ($\mu _{F}$= 0.7 GeV) = $1.50$ $\pm0.04$ GeV.
20  NARISON 2018A determines simultaneously ${{\overline{\mathit m}}_{{{c}}}}({{\overline{\mathit m}}_{{{c}}}}$) and the 4-dimension gluon condensate using QCD exponential sum rules and their ratios evaluated at the optimal scale $\mu $ = 2.85 GeV at N2LO-N3LO of perturbative QCD and including condensates up to dimension $6 - 8$ in the (axial-)vector and (pseudo-)scalar charmonium channels.
21  NARISON 2018B determines ${{\overline{\mathit m}}_{{{c}}}}({{\overline{\mathit m}}_{{{c}}}}$) using QCD vector moment sum rules and their ratios at N2LO-N3LO of perturbative QCD and including condensates up to dimension 8.
22  BERTONE 2016 determine ${{\overline{\mathit m}}_{{{c}}}}({{\overline{\mathit m}}_{{{c}}}}$) from HERA deep inelastic scattering data using the FONLL scheme. Also determine ${{\overline{\mathit m}}_{{{c}}}}({{\overline{\mathit m}}_{{{c}}}})=1.318$ $\pm0.054$ ${}^{+0.490}_{-0.022}$ using the fixed flavor number scheme.
23  CHAKRABORTY 2015 is a lattice QCD computation using 2+1+1 dynamical flavors. Moments of pseudoscalar current-current correlators are matched to ${{\mathit \alpha}_{{{s}}}^{3}}$-accurate QCD perturbation theory with the ${{\mathit \eta}_{{{c}}}}$ meson mass tuned to experiment.
24  ABRAMOWICZ 2013C determines ${\mathit m}_{{{\mathit c}}}$ from charm production in deep inelastic ${{\mathit e}}{{\mathit p}}$ scattering, using the QCD prediction at NLO order. The uncertainties from model and parameterization assumptions, and the value of ${{\mathit \alpha}_{{{s}}}}$, of $\pm0.03$, $\pm 0.02$, and $\pm 0.02$ respectively, have been combined in quadrature.
25  DEHNADI 2013 determines ${\mathit m}_{{{\mathit c}}}$ using QCD sum rules for the charmonium spectrum and charm continuum to order ${{\mathit \alpha}_{{{s}}}^{3}}$ (N3LO). The statistical and systematic experimental errors of $\pm0.006$ and $\pm0.009$ have been combined in quadrature. The theoretical uncertainties $\pm0.019$ from truncation of the perturbation series, $\pm0.010$ from ${{\mathit \alpha}_{{{s}}}}$, and $\pm0.002$ from the gluon condensate have been combined in quadrature.
26  NARISON 2013 determines ${\mathit m}_{{{\mathit c}}}$ using QCD spectral sum rules to order ${{\mathit \alpha}_{{{s}}}^{2}}$ (NNLO) and including condensates up to dimension 6.
27  ALEKHIN 2012 determines ${\mathit m}_{{{\mathit c}}}$ from heavy quark production in deep inelastic scattering at HERA using approximate NNLO QCD.
28  NARISON 2012A determines ${\mathit m}_{{{\mathit c}}}$ using sum rules for the vector current correlator to order ${{\mathit \alpha}_{{{s}}}^{3}}$, including the effect of gluon condensates up to dimension eight.
29  ALEKHIN 2011 determines ${\mathit m}_{{{\mathit c}}}$ from heavy quark production in deep inelastic scattering using fixed target and HERA data, and approximate NNLO QCD.
30  BLOSSIER 2010 determines quark masses from a computation of the hadron spectrum using ${{\mathit n}_{{{f}}}}$=2 dynamical twisted-mass Wilson fermions.
31  BODENSTEIN 2010 determines ${{\overline{\mathit m}}_{{{c}}}}$(3 GeV) = $1.008$ $\pm0.026$ GeV using finite energy sum rules for the vector current correlator. The authors have converted this to ${{\overline{\mathit m}}_{{{c}}}}({{\overline{\mathit m}}_{{{c}}}}$) using ${{\mathit \alpha}_{{{s}}}}({{\mathit M}_{{{Z}}}}$) = $0.1189$ $\pm0.0020$.
32  MCNEILE 2010 determines ${\mathit m}_{{{\mathit c}}}$ by comparing the order ${{\mathit \alpha}_{{{s}}}^{3}}$ perturbative results for the pseudo-scalar current to lattice simulations with ${{\mathit n}_{{{f}}}}$ = 2+1 sea-quarks by the HPQCD collaboration.
33  NARISON 2010 determines ${\mathit m}_{{{\mathit c}}}$ from ratios of moments of vector current correlators computed to order ${{\mathit \alpha}_{{{s}}}^{3}}$ and including the dimension-six gluon condensate.
34  CHETYRKIN 2009 determine ${\mathit m}_{{{\mathit c}}}$ and ${\mathit m}_{{{\mathit b}}}$ from the ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit Q}}{{\overline{\mathit Q}}}$ cross-section and sum rules, using an order ${{\mathit \alpha}_{{{s}}}^{3}}$ computation of the heavy quark vacuum polarization. They also determine ${\mathit m}_{{{\mathit c}}}$(3 GeV) = $0.986$ $\pm0.013$GeV.
35  ALLISON 2008 determine ${\mathit m}_{{{\mathit c}}}$ by comparing four-loop perturbative results for the pseudo-scalar current correlator to lattice simulations by the HPQCD collaboration. The result has been updated in MCNEILE 2010.
36  KUHN 2007 determine ${{\overline{\mathit m}}_{{{c}}}}({{\mathit \mu}}$ = 3 GeV) = $0.986$ $\pm0.013$ GeV and ${{\overline{\mathit m}}_{{{c}}}}({{\overline{\mathit m}}_{{{c}}}}$) from a four-loop sum-rule computation of the cross-section for ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ hadrons in the charm threshold region.
37  BOUGHEZAL 2006 result comes from the first moment of the hadronic production cross-section to order ${{\mathit \alpha}_{{{s}}}^{3}}$.
38  BUCHMUELLER 2006 determine ${{\mathit m}_{{{b}}}}$ and ${{\mathit m}_{{{c}}}}$ by a global fit to inclusive ${{\mathit B}}$ decay spectra.
39  HOANG 2006 determines ${{\overline{\mathit m}}_{{{c}}}}({{\overline{\mathit m}}_{{{c}}}}$) from a global fit to inclusive ${{\mathit B}}$ decay data. The ${{\mathit B}}$ decay distributions were computed to order ${{\mathit \alpha}_{{{s}}}^{2}}{{\mathit \beta}_{{{0}}}}$, and the conversion between different ${{\mathit m}_{{{c}}}}$ mass schemes to order ${{\mathit \alpha}_{{{s}}}^{3}}$.
40  AUBERT 2004X obtain ${\mathit m}_{{{\mathit c}}}$ from a fit to the hadron mass and lepton energy distributions in semileptonic ${{\mathit B}}$ decay. The paper quotes values in the kinetic scheme. The $\overline{\rm{}MS}$ value has been provided by the BABAR collaboration.
41  HOANG 2004 determines ${{\overline{\mathit m}}_{{{c}}}}({{\overline{\mathit m}}_{{{c}}}}$) from moments at order ${{\mathit \alpha}_{{{s}}}^{2}}$ of the charm production cross-section in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ annihilation.
42  DEDIVITIIS 2003 use a quenched lattice computation of heavy-heavy and heavy-light meson masses.
43  EIDEMULLER 2003 determines m$_{b}$ and m$_{c}$ using QCD sum rules.
44  ERLER 2003 determines m$_{b}$ and m$_{c}$ using QCD sum rules. Includes recent BES data.
45  ZYABLYUK 2003 determines m$_{c}$ by using QCD sum rules in the pseudoscalar channel and comparing with the $\eta _{c}$ mass.

           ${\mathit {\mathit c}}$-QUARK MASS (GeV)
References