$\bf{
4.67 {}^{+0.48}_{-0.17}}$
|
OUR EVALUATION
|
$5.3$ $\pm0.4$ |
1 |
|
THEO |
$4.675$ $\pm0.056$ |
2 |
|
LATT |
$4.67$ $\pm0.06$ $\pm0.06$ |
3 |
|
LATT |
$5.03$ $\pm0.26$ |
4 |
|
LATT |
$3.68$ $\pm0.29$ $\pm0.10$ |
5 |
|
LATT |
$4.65$ $\pm0.15$ $\pm0.32$ |
6 |
|
LATT |
$4.77$ $\pm0.15$ |
7 |
|
LATT |
• • • We do not use the following data for averages, fits, limits, etc. • • • |
$4.79$ $\pm0.07$ $\pm0.12$ |
8 |
|
LATT |
$4.6$ $\pm0.3$ |
9 |
|
LATT |
$4.79$ $\pm0.16$ |
7 |
|
LATT |
$5.3$ $\pm0.4$ |
10 |
|
THEO |
$4.7$ $\pm0.8$ |
11 |
|
THEO |
$5.49$ $\pm0.39$ |
12 |
|
LATT |
$4.8$ $\pm0.5$ |
13 |
|
THEO |
$4.4$ $\pm0.3$ |
14 |
|
LATT |
$5.1$ $\pm0.4$ |
15 |
|
THEO |
$3.9$ $\pm0.5$ |
16 |
|
LATT |
1
DOMINGUEZ 2019 determine the quark mass from a QCD finite energy sum rule for the divergence of the axial current.
|
2
BAZAVOV 2018 determine the quark masses using a lattice computation with staggered fermions and four active quark flavors.
|
3
FODOR 2016 is a lattice simulation with ${{\mathit N}_{{f}}}$ = 2 + 1 dynamical flavors and includes partially quenched QED effects.
|
4
CARRASCO 2014 is a lattice QCD computation of light quark masses using 2 + 1 + 1 dynamical quarks, with ${{\mathit m}_{{u}}}$ = ${{\mathit m}_{{d}}}{}\not=$ ${{\mathit m}_{{s}}}{}\not=$ ${{\mathit m}_{{c}}}$. The ${\mathit {\mathit u}}$ and ${\mathit {\mathit d}}$ quark masses are obtained separately by using the ${{\mathit K}}$ meson mass splittings and lattice results for the electromagnetic contributions.
|
5
AOKI 2012 is a lattice computation using 1 + 1 + 1 dynamical quark flavors.
|
6
BLUM 2010 determines light quark masses using a QCD plus QED lattice computation of the electromagnetic mass splittings of the low-lying hadrons. The lattice simulations use 2+1 dynamical quark flavors.
|
7
DAVIES 2010 and MCNEILE 2010 determine ${{\overline{\mathit m}}_{{c}}}({{\mathit \mu}})/{{\overline{\mathit m}}_{{s}}}({{\mathit \mu}}$) = $11.85$ $\pm0.16$ using a lattice computation with ${{\mathit N}_{{f}}}$ = 2 + 1 dynamical fermions of the pseudoscalar meson masses. Mass ${\mathit m}_{{{\mathit d}}}$ is obtained from this using the value of ${\mathit m}_{{{\mathit c}}}$ from ALLISON 2008 or MCNEILE 2010 and the BAZAVOV 2010 values for the light quark mass ratios, ${\mathit m}_{{{\mathit s}}}/{{\overline{\mathit m}}}$ and ${\mathit m}_{{{\mathit u}}}/{\mathit m}_{{{\mathit d}}}$.
|
8
DURR 2011 determine quark mass from a lattice computation of the meson spectrum using ${{\mathit N}_{{f}}}$ = 2 + 1 dynamical flavors. The lattice simulations were done at the physical quark mass, so that extrapolation in the quark mass was not needed. The individual ${\mathit m}_{{{\mathit u}}}$, ${\mathit m}_{{{\mathit d}}}$ values are obtained using the lattice determination of the average mass ${\mathit m}_{\mathrm {ud}}$ and of the ratio ${\mathit m}_{{{\mathit s}}}/{\mathit m}_{\mathrm {ud}}$ and the value of $\mathit Q$ = (${{\mathit m}^{2}}_{{{\mathit s}}}$ $−$ ${{\mathit m}^{2}}_{\mathrm {ud}}$) $/$ (${{\mathit m}^{2}}_{{{\mathit d}}}$ $−$ ${{\mathit m}^{2}}_{{{\mathit u}}}$) as determined from ${{\mathit \eta}}$ $\rightarrow$ 3 ${{\mathit \pi}}$ decays.
|
9
BAZAVOV 2010 is a lattice computation using 2+1 dynamical quark flavors.
|
10
DOMINGUEZ 2009 use QCD finite energy sum rules for the two-point function of the divergence of the axial vector current computed to order $\alpha {}^{4}_{s}$.
|
11
DEANDREA 2008 determine ${\mathit m}_{{{\mathit u}}}−{\mathit m}_{{{\mathit d}}}$ from ${{\mathit \eta}}$ $\rightarrow$ 3 ${{\mathit \pi}^{0}}$ , and combine with the PDG 2006 lattice average value of ${\mathit m}_{{{\mathit u}}}+{\mathit m}_{{{\mathit d}}}$ = $7.6$ $\pm1.6$ to determine ${\mathit m}_{{{\mathit u}}}$ and ${\mathit m}_{{{\mathit d}}}$.
|
12
BLUM 2007 determine quark masses from the pseudoscalar meson masses using a QED plus QCD lattice computation with two dynamical quark flavors.
|
13
JAMIN 2006 determine ${\mathit m}_{{{\mathit d}}}$(2 GeV) by combining the value of ${\mathit m}_{{{\mathit s}}}$ obtained from the spectral function for the scalar ${{\mathit K}}{{\mathit \pi}}$ form factor with other determinations of the quark mass ratios.
|
14
MASON 2006 extract light quark masses from a lattice simulation using staggered fermions with an improved action, and three dynamical light quark flavors with degenerate ${\mathit {\mathit u}}$ and ${\mathit {\mathit d}}$ quarks. Perturbative corrections were included at NNLO order. The quark masses ${\mathit m}_{{{\mathit u}}}$ and ${\mathit m}_{{{\mathit d}}}$ were determined from their (${\mathit m}_{{{\mathit u}}}+{\mathit m}_{{{\mathit d}}})/$2 measurement and AUBIN 2004A ${\mathit m}_{{{\mathit u}}}/{\mathit m}_{{{\mathit d}}}$ value.
|
15
NARISON 2006 uses sum rules for ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ hadrons to order ${{\mathit \alpha}_{{s}}^{3}}$ to determine ${\mathit m}_{{{\mathit s}}}$ combined with other determinations of the quark mass ratios.
|
16
AUBIN 2004A perform three flavor dynamical lattice calculation of pseudoscalar meson masses, with continuum estimate of electromagnetic effects in the kaon masses, and one-loop perturbative renormalization constant.
|