${\mathit m}_{{{\mathit u}}}/{\mathit m}_{{{\mathit d}}}$ MASS RATIO

INSPIRE   PDGID:
Q123MR0
VALUE DOCUMENT ID TECN  COMMENT
$\bf{ 0.462 \pm0.020}$ OUR EVALUATION  See the ideogram below.
$0.485$ $\pm0.011$ $\pm0.016$ 1
FODOR
2016
LATT
$0.4482$ ${}^{+0.0173}_{-0.0206}$ 2
BASAK
2015
LATT
$0.470$ $\pm0.056$ 3
CARRASCO
2014
LATT
$0.42$ $\pm0.01$ $\pm0.04$ 4
BAZAVOV
2010
LATT
$0.4818$ $\pm0.0096$ $\pm0.0860$ 5
BLUM
2010
LATT
• • We do not use the following data for averages, fits, limits, etc. • •
$0.698$ $\pm0.051$ 6
AOKI
2012
LATT
$0.550$ $\pm0.031$ 7
BLUM
2007
LATT
$0.43$ $\pm0.08$ 8
AUBIN
2004A
LATT
$0.410$ $\pm0.036$ 9
NELSON
2003
LATT
$0.553$ $\pm0.043$ 10
LEUTWYLER
1996
THEO Compilation
1  FODOR 2016 is a lattice simulation with ${{\mathit n}_{{{f}}}}$ = 2 + 1 dynamical flavors and includes partially quenched QED effects.
2  BASAK 2015 is a lattice computation using 2+1 dynamical quark flavors.
3  CARRASCO 2014 is a lattice QCD computation of light quark masses using 2 + 1 + 1 dynamical quarks, with ${{\mathit m}_{{{u}}}}$ = ${{\mathit m}_{{{d}}}}{}\not=$ ${{\mathit m}_{{{s}}}}{}\not=$ ${{\mathit m}_{{{c}}}}$. The ${\mathit {\mathit u}}$ and ${\mathit {\mathit d}}$ quark masses are obtained separately by using the ${{\mathit K}}$ meson mass splittings and lattice results for the electromagnetic contributions.
4  BAZAVOV 2010 is a lattice computation using 2+1 dynamical quark flavors.
5  BLUM 2010 is a lattice computation using 2+1 dynamical quark flavors.
6  AOKI 2012 is a lattice computation using 1 + 1 + 1 dynamical quark flavors.
7  BLUM 2007 determine quark masses from the pseudoscalar meson masses using a QED plus QCD lattice computation with two dynamical quark flavors.
8  AUBIN 2004A perform three flavor dynamical lattice calculation of pseudoscalar meson masses, with continuum estimate of electromagnetic effects in the kaon masses.
9  NELSON 2003 computes coefficients in the order $\mathit p{}^{4}$ chiral Lagrangian using a lattice calculation with three dynamical flavors. The ratio ${\mathit m}_{{{\mathit u}}}/{\mathit m}_{{{\mathit d}}}$ is obtained by combining this with the chiral perturbation theory computation of the meson masses to order $\mathit p{}^{4}$.
10  LEUTWYLER 1996 uses a combined fit to ${{\mathit \eta}}$ $\rightarrow$ 3 ${{\mathit \pi}}$ and ${{\mathit \psi}^{\,'}}$ $\rightarrow$ ${{\mathit J / \psi}}$ (${{\mathit \pi}},{{\mathit \eta}}$) decay rates, and the electromagnetic mass differences of the ${{\mathit \pi}}$ and ${{\mathit K}}$.

           ${\mathit m}_{{{\mathit u}}}/{\mathit m}_{{{\mathit d}}}$ MASS RATIO
References