$\bf{
8.52 \pm0.18}$
|
OUR AVERAGE
Error includes scale factor of 1.2.
|
$8.32$ $\pm0.15$ $\pm0.18$ |
|
1 |
|
PRMX |
$8.5$ $\pm1.1$ |
|
2 |
|
PIBE |
$8.4$ $\pm0.5$ $\pm0.5$ |
1182 |
3 |
|
CBAL |
$8.97$ $\pm0.22$ $\pm0.17$ |
|
|
|
CNTR |
$8.2$ $\pm0.4$ |
|
4 |
|
CNTR |
• • • We do not use the following data for averages, fits, limits, etc. • • • |
$5.6$ $\pm0.6$ |
|
|
|
CNTR |
$9$ $\pm0.68$ |
|
|
|
CNTR |
$7.3$ $\pm1.1$ |
|
|
|
CNTR |
1
LARIN 2011 reported $\Gamma $( ${{\mathit \pi}^{0}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ ) = $7.82$ $\pm0.14$ $\pm0.17$ eV which we converted to mean life $\tau $ = $\hbar{}/\Gamma $(total).
|
2
BYCHKOV 2009 obtains this using the conserved-vector-current relation between the vector form factor $\mathit F_{V}$ and the ${{\mathit \pi}^{0}}$ lifetime.
|
3
WILLIAMS 1988 gives $\Gamma\mathrm {( {{\mathit \gamma}} {{\mathit \gamma}} )}$ = $7.7$ $\pm0.5$ $\pm0.5$ eV. We give here $\tau $ = $\hbar{}/\Gamma\mathrm {(total)}$.
|
4
BROWMAN 1974 gives a ${{\mathit \pi}^{0}}$ width $\Gamma $ = $8.02$ $\pm0.42$ eV. The mean life is $\hbar{}/\Gamma $.
|