FORWARD-BACKWARD ASYMMETRY IN ${{\mathit K}^{\pm}}$ DECAYS

A$_{FB}({{\mathit K}}{}^{\pm{}}_{{{\mathit \pi}} {{\mathit \mu}} {{\mathit \mu}} }$) = ${\Gamma\mathrm {(cos({{\mathit \theta}}_{{{\mathit K}} {{\mathit \mu}}})>0)}−\Gamma\mathrm {(cos({{\mathit \theta}}_{{{\mathit K}} {{\mathit \mu}}})<0)}\over \Gamma\mathrm {(cos({{\mathit \theta}}_{{{\mathit K}} {{\mathit \mu}}})>0)}+\Gamma\mathrm {(cos({{\mathit \theta}}_{{{\mathit K}} {{\mathit \mu}}})<0)}}$

INSPIRE   PDGID:
S010AFB
VALUE CL% DOCUMENT ID TECN  COMMENT
$\bf{<0.009}$ 90 1
CORTINA-GIL
2022A
NA62 $2017 - 18$ data
• • We do not use the following data for averages, fits, limits, etc. • •
$<0.023$ 90 2
BATLEY
2011A
NA48
1  CORTINA-GIL 2022A measured the asymmetry A$_{FB}$ = ($0.0$ $\pm0.7$) $ \times 10^{-2}$. The quoted 90$\%$ C.L. was obtained via private communication and also presented at the Moriond 2023 conference. The authors will publish this limit in an addendum to the publication.
2  BATLEY 2011A gives a corresponding value of the asymmetry A$_{FB}$ = ($-2.4$ $\pm1.8$) $ \times 10^{-2}$.
References