$\boldsymbol CPT$-VIOLATION PARAMETERS
In ${{\mathit K}^{0}}-{{\overline{\mathit K}}^{0}}$ mixing, if $\mathit CP$-violating interactions include a $\mathit T$ conserving part then
| $|{{\mathit K}_{{S}}}\rangle{}$ = [$|{{\mathit K}_{{1}}}\rangle{}+(\epsilon +\delta )|{{\mathit K}_{{2}}}\rangle{}]/\sqrt {1+\vert \epsilon +\delta \vert ^2 }$ |
| $|{{\mathit K}_{{L}}}\rangle{}$ = [$|{{\mathit K}_{{2}}}\rangle{}+(\epsilon −\delta )|{{\mathit K}_{{1}}}\rangle{}]/\sqrt {1+\vert \epsilon −\delta \vert ^2 }$ |
where |
| $|{{\mathit K}_{{1}}}\rangle{}$ = [$|{{\mathit K}^{0}}\rangle{}+|{{\overline{\mathit K}}^{0}}\rangle{}]/\sqrt {2 }$ |
| $|{{\mathit K}_{{2}}}\rangle{}$ = [$|{{\mathit K}^{0}}\rangle{}−|{{\overline{\mathit K}}^{0}}\rangle{}]/\sqrt {2 }$ |
and |
| $|{{\overline{\mathit K}}^{0}}\rangle{}$ = $\mathit CP|{{\mathit K}^{0}}\rangle{}$. |
The parameter $\delta $ specifies the $\mathit CPT$-violating part.
Estimates of $\delta $ are given below assuming the validity of the $\Delta \mathit S=\Delta \mathit Q$ rule. See also THOMSON 1995 for a test of $\mathit CPT$-symmetry conservation in ${{\mathit K}^{0}}$ decays using the Bell-Steinberger relation.
A nonzero value violates $\mathit CPT$ invariance.
$-1.5$ $\pm1.6$ |
|
1 |
|
KTEV |
• • • We do not use the following data for averages, fits, limits, etc. • • • |
$0.4$ $\pm2.1$ |
|
2 |
|
KLOE |
$-0.2$ $\pm2.0$ |
|
3 |
|
NA48 |
$2.4$ $\pm5.0$ |
|
4 |
|
RVUE |
$-90$ $\pm290$ $\pm100$ |
1.3M |
5 |
|
CPLR |
$2100$ $\pm3700$ |
6481 |
6 |
|
|
1
ABOUZAID 2011 uses Bell-Steinberger relations.
|
2
AMBROSINO 2006H uses Bell-Steinberger relations with the following measurements: B( ${{\mathit K}_L^0}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ) in AMBROSINO 2006F, B( ${{\mathit K}_S^0}$ $\rightarrow$ ${{\mathit \pi}^{0}}{{\mathit \pi}^{0}}{{\mathit \pi}^{0}}$ ) in AMBROSINO 2005B, the ${{\mathit K}_S^0}$ -semileptonic charge asymmetry in AMBROSINO 2006E, and ${{\mathit K}^{0}}$-semileptonic results in ANGELOPOULOS 1998F.
|
3
LAI 2005A values are obtained through unitarity (Bell-Steinberger relations), improving determination of $\eta _{000}$ and combining other data from PDG 2004 and APOSTOLAKIS 1999B.
|
4
APOSTOLAKIS 1999B assumes only unitarity and combines CPLEAR and other results.
|
5
If $\Delta \mathit S=\Delta \mathit Q$ is not assumed, ANGELOPOULOS 1998F finds Im$\delta =(-15$ $\pm23$ $\pm3){\times }10^{-3}$.
|
6
DEMIDOV 1995 reanalyzes data from HART 1973 and NIEBERGALL 1974 .
|
|
Conservation Laws: |
|
References: |
| PR D83 092001 |
Precise Measurements of Direct $\mathit CP$ Violation, $\mathit CPT$ Symmetry, and other Parameters in the Neutral Kaon System |
| JHEP 0612 011 |
Determination of $\mathit CP$ and $\mathit CPT$ Violation Parameters in the Neutral Kaon System using the Bell-Steinberger Relation and Data from the KLOE Experiment |
| PL B610 165 |
Search for $\mathit CP$ Violation in ${{\mathit K}^{0}}$ $\rightarrow$ 3 ${{\mathit \pi}^{0}}$ Decays |
| PL B456 297 |
Determination of the $\mathit T$- and $\mathit CPT$ Violation Parameters in the Neutral Kaon System using the Bell Steinberger Relation and Data from CPLEAR |
| PL B444 52 |
A Determination of the $\mathit CPT$ Violation Parameter Re($\delta $) from the Semileptonic Decay of Strangeness Tagged Neutral Kaons |
| PAN 58 968 |
The Limits on $\mathit CPT$ Odd Part of $\mathit CP$ Violation from ${{\mathit K}^{0}}$ (${{\overline{\mathit K}}^{0}}$) Semileptonic Decays |
|