$\mathit CPT$-VIOLATION PARAMETERS

In ${{\mathit K}^{0}}-{{\overline{\mathit K}}^{0}}$ mixing, if $\mathit CP$-violating interactions include a $\mathit T$ conserving part then
 $|{{\mathit K}_{{{S}}}}\rangle{}$ = [$|{{\mathit K}_{{{1}}}}\rangle{}+(\epsilon +\delta )|{{\mathit K}_{{{2}}}}\rangle{}]/\sqrt {1+\vert \epsilon +\delta \vert ^2 }$
 $|{{\mathit K}_{{{L}}}}\rangle{}$ = [$|{{\mathit K}_{{{2}}}}\rangle{}+(\epsilon −\delta )|{{\mathit K}_{{{1}}}}\rangle{}]/\sqrt {1+\vert \epsilon −\delta \vert ^2 }$
where
 $|{{\mathit K}_{{{1}}}}\rangle{}$ = [$|{{\mathit K}^{0}}\rangle{}+|{{\overline{\mathit K}}^{0}}\rangle{}]/\sqrt {2 }$
 $|{{\mathit K}_{{{2}}}}\rangle{}$ = [$|{{\mathit K}^{0}}\rangle{}−|{{\overline{\mathit K}}^{0}}\rangle{}]/\sqrt {2 }$
and
 $|{{\overline{\mathit K}}^{0}}\rangle{}$ = $\mathit CP|{{\mathit K}^{0}}\rangle{}$.

The parameter $\delta $ specifies the $\mathit CPT$-violating part.
Estimates of $\delta $ are given below assuming the validity of the $\Delta \mathit S=\Delta \mathit Q$ rule. See also THOMSON 1995 for a test of $\mathit CPT$-symmetry conservation in ${{\mathit K}^{0}}$ decays using the Bell-Steinberger relation.

IMAGINARY PART OF $\delta $

INSPIRE   PDGID:
S011DIM
A nonzero value violates $\mathit CPT$ invariance.
VALUE ($ 10^{-5} $) EVTS DOCUMENT ID TECN  COMMENT
$-1.5$ $\pm1.6$ 1
ABOUZAID
2011
KTEV
• • We do not use the following data for averages, fits, limits, etc. • •
$0.4$ $\pm2.1$ 2
AMBROSINO
2006H
KLOE
$-0.2$ $\pm2.0$ 3
LAI
2005A
NA48
$2.4$ $\pm5.0$ 4
APOSTOLAKIS
1999B
RVUE
$-90$ $\pm290$ $\pm100$ 1.3M 5
ANGELOPOULOS
1998F
CPLR
$2100$ $\pm3700$ 6481 6
DEMIDOV
1995
${{\mathit K}_{{{{{\mathit \ell}}3}}}}$ reanalysis
1  ABOUZAID 2011 uses Bell-Steinberger relations.
2  AMBROSINO 2006H uses Bell-Steinberger relations with the following measurements: B( ${{\mathit K}_L^0}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$) in AMBROSINO 2006F, B( ${{\mathit K}_S^0}$ $\rightarrow$ ${{\mathit \pi}^{0}}{{\mathit \pi}^{0}}{{\mathit \pi}^{0}}$) in AMBROSINO 2005B, the ${{\mathit K}_S^0}$ -semileptonic charge asymmetry in AMBROSINO 2006E, and ${{\mathit K}^{0}}$-semileptonic results in ANGELOPOULOS 1998F.
3  LAI 2005A values are obtained through unitarity (Bell-Steinberger relations), improving determination of $\eta _{000}$ and combining other data from PDG 2004 and APOSTOLAKIS 1999B.
4  APOSTOLAKIS 1999B assumes only unitarity and combines CPLEAR and other results.
5  If $\Delta \mathit S=\Delta \mathit Q$ is not assumed, ANGELOPOULOS 1998F finds Im$\delta =(-15$ $\pm23$ $\pm3){\times }10^{-3}$.
6  DEMIDOV 1995 reanalyzes data from HART 1973 and NIEBERGALL 1974.
Conservation Laws:
$\mathit CPT$ INVARIANCE
References