PARAMETERS FOR ${{\mathit K}_S^0}$ $\rightarrow$ 3 ${{\mathit \pi}}$ DECAY

Im($\eta _{000}$) = Im($\mathit A$( ${{\mathit K}_S^0}$ $\rightarrow$ ${{\mathit \pi}^{0}}{{\mathit \pi}^{0}}{{\mathit \pi}^{0}})/\mathit A$( ${{\mathit K}_L^0}$ $\rightarrow$ ${{\mathit \pi}^{0}}{{\mathit \pi}^{0}}{{\mathit \pi}^{0}}$))

INSPIRE   PDGID:
S012E0
${{\mathit K}_S^0}$ $\rightarrow$ ${{\mathit \pi}^{0}}{{\mathit \pi}^{0}}{{\mathit \pi}^{0}}$ violates $\mathit CP$ conservation, in contrast to ${{\mathit K}_S^0}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$ which has a $\mathit CP$-conserving part.
VALUE EVTS DOCUMENT ID TECN  COMMENT
$\bf{ -0.001 \pm0.016}$ OUR AVERAGE
$0.000$ $\pm0.009$ $\pm0.013$ 4.9M 1
LAI
2005A
NA48 Assumes $\mathit CPT$
$-0.05$ $\pm0.12$ $\pm0.05$ 17300 2
ANGELOPOULOS
1998B
CPLR Assumes $\mathit CPT$
1  LAI 2005A assumes Re($\eta _{000}$)=Re($\epsilon )=1.66 \times 10^{-3}$. The equivalent limit is $\vert \eta _{000}\vert {}_{CPT}<$0.025 at 90$\%$ CL Without assuming $\mathit CPT$ invariance, they obtain Re($\eta _{000})=-0.002$ $\pm0.011$ $\pm0.015$ and Im($\eta _{000})=-0.003$ $\pm0.013$ $\pm0.017$ with a statistical correlation coefficient of 0.77 and an overall correlation coefficient of 0.57 between imaginary and real part. The equivalent limit is $\vert \eta _{000}\vert <$0.045 at 90$\%$ CL
2  ANGELOPOULOS 1998B assumes Re($\eta _{000}$) = Re($\epsilon $) = $1.635 \times 10^{-3}$. Without assuming $\mathit CPT$ invariance, they obtain Re($\eta _{000}$) = $0.18$ $\pm0.14$ $\pm0.06$ and Im($\eta _{000}$) = $0.15$ $\pm0.20$ $\pm0.03$.
Conservation Laws:
$\mathit CP$ INVARIANCE
References