$\bf{
0.89564 \pm0.00033}$
|
OUR FIT
Not assuming $\mathit CPT$
|
$\bf{
0.8954 \pm0.0004}$
|
OUR FIT
Error includes scale factor of 1.1.
Assuming $\mathit CPT$
|
$0.89589$ $\pm0.00070$ |
|
1, 2 |
|
KTEV |
$0.89623$ $\pm0.00047$ |
|
1, 3 |
|
KTEV |
$0.89562$ $\pm0.00029$ $\pm0.00043$ |
20M |
4 |
|
KLOE |
$0.89598$ $\pm0.00048$ $\pm0.00051$ |
16M |
|
|
NA48 |
$0.8971$ $\pm0.0021$ |
|
|
|
NA31 |
$0.8941$ $\pm0.0014$ $\pm0.0009$ |
|
|
|
E773 |
$0.8929$ $\pm0.0016$ |
|
|
|
E731 |
• • • We do not use the following data for averages, fits, limits, etc. • • • |
$0.8965$ $\pm0.0007$ |
|
5 |
|
KTEV |
$0.8958$ $\pm0.0013$ |
|
6 |
|
KTEV |
$0.8920$ $\pm0.0044$ |
214k |
|
|
SPEC |
$0.905$ $\pm0.007$ |
|
7 |
|
SPEC |
$0.881$ $\pm0.009$ |
26k |
|
|
SPEC |
$892.6 \pm3.2 \pm0.2 \times 10^{-3}$ |
|
8 |
|
SPEC |
$0.8937$ $\pm0.0048$ |
6M |
|
|
ASPK |
$0.8958$ $\pm0.0045$ |
50k |
9 |
|
HBC |
$0.856$ $\pm0.008$ |
19994 |
10 |
|
HBC |
$0.872$ $\pm0.009$ |
20000 |
9, 10 |
|
DBC |
1
The two ABOUZAID 2011 values use the same full KTeV dataset from 1996, 1997, and 1999. The first enters the ''assuming $\mathit CPT$'' fit and the second enters the ''not assuming $\mathit CPT$'' fit.
|
2
ABOUZAID 2011 fit has $\Delta \mathit m$, ${{\mathit \tau}_{{s}}}$, ${{\mathit \phi}_{{\epsilon}}}$, Re(${{\mathit \epsilon}^{\,'}}/{{\mathit \epsilon}}$), and Im(${{\mathit \epsilon}^{\,'}}/{{\mathit \epsilon}}$) as free parameters. See Im(${{\mathit \epsilon}^{\,'}}/{{\mathit \epsilon}}$) in the ''${{\mathit K}_L^0}$ $\mathit CP$ violation'' section for correlation information.
|
3
ABOUZAID 2011 fit has $\Delta \mathit m$ and ${{\mathit \tau}_{{s}}}$ free but constrains ${{\mathit \phi}_{{\epsilon}}}$ to the Superweak value, i.e. assumes $\mathit CPT$. This ${{\mathit \tau}_{{s}}}$ value is correlated with their $\Delta \mathit m$ = ${\mathit m}_{{{\mathit K}_L^0} }{\mathit m}_{{{\mathit K}_S^0} }$ measurement in the ${{\mathit K}_L^0}$ listings. The correlation coefficient ${{\mathit \rho}}({{\mathit \tau}_{{s}}}$, $\Delta \mathit m$) = $-0.670$.
|
4
Fit to the proper time distribution.
|
5
This ALAVI-HARATI 2003 fit has $\Delta \mathit m$ and $\tau _{{{\mathit s}}}$ free but constrains $\phi _{+−}$ to the Superweak value, i.e. assumes $\mathit CPT$. This $\tau _{{{\mathit s}}}$ value is correlated with their $\Delta \mathit m$ = ${\mathit m}_{{{\mathit K}_L^0} }{\mathit m}_{{{\mathit K}_S^0} }$ measurement in the ${{\mathit K}_L^0}$ listings. The correlation coefficient $\rho\mathrm {(\tau _{{{\mathit s}}},\Delta \mathit m)}$ = $-0.396$. Superseded by ABOUZAID 2011 .
|
6
This ALAVI-HARATI 2003 fit has $\Delta \mathit m$, $\phi _{+−}$, and $\tau _{{{\mathit K}_{{S}}}}$ free. See $\phi _{+−}$ in the ``${{\mathit K}_{{L}}}$ $\mathit CP$ violation'' section for correlation information. Superseded by ABOUZAID 2011 .
|
7
ARONSON 1982 find that ${{\mathit K}_S^0}$ mean life may depend on the kaon energy.
|
8
CARITHERS 1975 measures the $\Delta \mathit m$ dependence of the total decay rate (inverse mean life) to be $\Gamma\mathrm {({{\mathit K}_S^0} )}$ = $\lbrack{}(1.122$ $\pm0.004)+0.16{}(\Delta \mathit m-0.5348)/\Delta \mathit m\rbrack{}10^{10}$/s, or, in terms of mean life, CARITHERS 1975 measures ${{\mathit \tau}_{{s}}}$ = ( $0.8913$ $\pm0.0032$ ) $$ $0.238$ [ $\Delta \mathit m$$$ $0.5348$ ] . We have adjusted the measurement to use our best values of ( $\Delta \mathit m$ = $0.5293$ $\pm0.0009$ ) . Our first error is their experiment's error and our second error is the systematic error from using our best values.
|
9
HILL 1968 has been changed by the authors from the published value ($0.865$ $\pm0.009$) because of a correction in the shift due to $\eta _{+−}$. SKJEGGESTAD 1972 and HILL 1968 give detailed discussions of systematics encountered in this type of experiment.
|
10
Pre-1971 experiments are excluded from the average because of disagreement with later more precise experiments.
|