sin$\phi $ cos $\phi $ = [($\hat{{\mathit n}}_{ee}{\times }\hat{{\mathit n}}_{ {{\mathit \pi}} {{\mathit \pi}} }$) $\cdot{}$ $\hat{{\mathit z}}$] ($\hat{{\mathit n}}_{ee}\cdot{}\hat{{\mathit n}}_{ {{\mathit \pi}} {{\mathit \pi}} }$) , | |
and | |
${{\mathit A}_{{\phi}}}{}\equiv$ ${{{\mathit N}_{{{sin{{\mathit \phi}}~cos{{\mathit \phi}}>0}}}}~−~{{\mathit N}_{{{sin{{\mathit \phi}}~cos{{\mathit \phi}}<0}}}}\over {{\mathit N}_{{{sin{{\mathit \phi}}~cos{{\mathit \phi}}>0}}}}~+~{{\mathit N}_{{{sin{{\mathit \phi}}~cos{{\mathit \phi}}<0}}}} }$ . |
Conservation Laws: | |||||
| |||||
References: | |||||
|