$\bf{
0.8409 \pm0.0004}$
|
OUR AVERAGE
|
$0.833$ $\pm0.010$ |
1 |
|
LASR |
$0.831$ $\pm0.007$ $\pm0.012$ |
2 |
|
SPEC |
$0.84087$ $\pm0.00026$ $\pm0.00029$ |
|
|
LASR |
• • • We do not use the following data for averages, fits, limits, etc. • • • |
$0.877$ $\pm0.013$ |
3 |
|
LASR |
$0.8335$ $\pm0.0095$ |
4 |
|
LASR |
$0.8751$ $\pm0.0061$ |
|
|
RVUE |
$0.895$ $\pm0.014$ $\pm0.014$ |
5 |
|
SPEC |
$0.916$ $\pm0.024$ |
|
|
SPEC |
$0.8775$ $\pm0.0051$ |
|
|
RVUE |
$0.875$ $\pm0.008$ $\pm0.006$ |
|
|
SPEC |
$0.879$ $\pm0.005$ $\pm0.006$ |
|
|
SPEC |
$0.912$ $\pm0.009$ $\pm0.007$ |
|
|
|
$0.871$ $\pm0.009$ $\pm0.003$ |
|
|
|
$0.84184$ $\pm0.00036$ $\pm0.00056$ |
|
|
LASR |
$0.8768$ $\pm0.0069$ |
|
|
RVUE |
$0.844$ ${}^{+0.008}_{-0.004}$ |
|
|
|
$0.897$ $\pm0.018$ |
|
|
|
$0.8750$ $\pm0.0068$ |
|
|
RVUE |
$0.895$ $\pm0.010$ $\pm0.013$ |
|
|
|
1
BEZGINOV 2019 measures the 2${{\mathit S}_{{1/2}}}$ to 2${{\mathit P}_{{1/2}}}$ transition frequency in atomic hydrogen using the frequency-offset separated oscillatory field (FOSOF) technique. The result agrees well with the muonic hydrogen Lamb shift value.
|
2
The XIONG 2019 value from ${{\mathit e}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit e}}{{\mathit p}}$ scattering and supports the muonic hydrogen Lamb shift value.
|
3
FLEURBAEY 2018 measures the 1S-3S transition frequency in hydrogen and in combination with the 1S-2S transition frequency deduces the proton radius and the Rydberg constant.
|
4
The BEYER 2017 result is 3.3 combined standard deviations below the MOHR 2016 (2014 CODATA) value. The experiment measures the 2S-4P transition in hydrogen and gets the proton radius and the Rydberg constant.
|
5
Authors also provide values for combinations of all available data.
|