${{\mathit p}}$ MAGNETIC POLARIZABILITY ${{\mathit \beta}_{{{p}}}}$

INSPIRE   JSON  (beta) PDGID:
S016MPL
The electric and magnetic polarizabilities are subject to a dispersion sum-rule constraint ${{\overline{\mathit \alpha}}}$ $+$ ${{\overline{\mathit \beta}}}$ = ($14.2$ $\pm0.5$) $ \times 10^{-4}$ fm${}^{3}$. Errors here are anticorrelated with those on ${{\overline{\mathit \alpha}}_{{{p}}}}$ due to this constraint.

See LI 2022D and therein for measurements of the mean square proton magnetic polarizability radius.
VALUE ($ 10^{-4} $ fm${}^{3}$) DOCUMENT ID TECN  COMMENT
$\bf{ 2.31 \pm0.29}$ OUR AVERAGE  Error includes scale factor of 1.1.
$2.4$ $\pm0.6$ $\pm0.1$ 1
MORNACCHI
2022
FIT Fit of RCS data sets
$1.77$ ${}^{+0.52}_{-0.54}$ 2
PASQUINI
2019
FIT fit of RCS data sets
$3.15$ $\pm0.35$ $\pm0.36$
MCGOVERN
2013
RVUE ${{\mathit \chi}}$EFT + Compton scattering
$3.4$ $\pm1.1$ $\pm0.1$ 3
BEANE
2003
EFT + ${{\mathit \gamma}}{{\mathit p}}$
$1.43$ $\pm0.98$ ${}^{+0.52}_{-0.98}$ 4
BLANPIED
2001
LEGS ${{\mathit p}}(\vec\gamma,{{\mathit \gamma}}$), ${{\mathit p}}(\vec\gamma,{{\mathit \pi}^{0}}$), ${{\mathit p}}(\vec\gamma,{{\mathit \pi}^{+}}$)
$1.2$ $\pm0.7$ $\pm0.5$ 5
OLMOSDELEON
2001
CNTR ${{\mathit \gamma}}{{\mathit p}}$ Compton scattering
$2.1$ $\pm0.8$ $\pm0.5$ 6
MACGIBBON
1995
RVUE global average
• • We do not use the following data for averages, fits, limits, etc. • •
$2.3$ $\pm0.9$ $\pm0.7$ 7
BARANOV
2001
RVUE Global average
$1.7$ $\pm0.6$ $\pm0.9$
MACGIBBON
1995
CNTR ${{\mathit \gamma}}{{\mathit p}}$ Compton scattering
$4.4$ $\pm0.4$ $\pm1.1$
HALLIN
1993
CNTR ${{\mathit \gamma}}{{\mathit p}}$ Compton scattering
$3.58$ ${}^{+1.19}_{-1.25}$ ${}^{+1.03}_{-1.07}$
ZIEGER
1992
CNTR ${{\mathit \gamma}}{{\mathit p}}$ Compton scattering
$3.3$ $\pm2.2$ $\pm1.3$
FEDERSPIEL
1991
CNTR ${{\mathit \gamma}}{{\mathit p}}$ Compton scattering
1  MORNACCHI 2022 perform the first simultaneous extraction of the six leading-order proton polarizabilities using fixed-t subtracted dispersion relations and a bootstrap-based fitting technique.
2  PASQUINI 2019 fit data sets for the unpolarized proton RCS cross section, using fixed-t subtracted dispersion relations and a bootstrap-based fitting technique.
3  BEANE 2003 uses effective field theory and low-energy ${{\mathit \gamma}}{{\mathit p}}$ and ${{\mathit \gamma}}{{\mathit d}}$ Compton-scattering data. It also gets for the isoscalar polarizabilities (see the erratum) $\alpha _{\mathit N}$= ($13.0$ $\pm1.9$ ${}^{+3.9}_{-1.5}$) $ \times 10^{-4}$ fm${}^{3}$ and $\beta _{\mathit N}$= ($-1.8$ $\pm1.9$ ${}^{+2.1}_{-0.9}$) $ \times 10^{-4}$ fm${}^{3}$.
4  BLANPIED 2001 gives ${{\mathit \alpha}_{{{p}}}}+{{\mathit \beta}_{{{p}}}}$ and ${{\mathit \alpha}_{{{p}}}}−{{\mathit \beta}_{{{p}}}}$. The separate ${{\mathit \alpha}_{{{p}}}}$ and ${{\mathit \beta}_{{{p}}}}$ are provided to us by A.$~$Sandorfi. The first error above is statistics plus systematics; the second is from the model.
5  This OLMOSDELEON 2001 result uses the TAPS data alone, and does not use the (re-evaluated) sum-rule constraint that ${{\mathit \alpha}}+{{\mathit \beta}}$= ($13.8$ $\pm0.4$) $ \times 10^{-4}~$fm${}^{3}$. See the paper for a discussion.
6  MACGIBBON 1995 combine the results of ZIEGER 1992, FEDERSPIEL 1991, and their own experiment to get a ``global average'' in which model errors and systematic errors are treated in a consistent way. See MACGIBBON 1995 for a discussion.
7  BARANOV 2001 combines the results of 10 experiments from 1958 through 1995 to get a global average that takes into account both systematic and model errors and does not use the theoretical constraint on the sum $\alpha _{{{\mathit p}}}+\beta _{{{\mathit p}}}$.
References