${{\boldsymbol p}}$ MAGNETIC POLARIZABILITY ${{\boldsymbol \beta}_{{p}}}$ INSPIRE search

The electric and magnetic polarizabilities are subject to a dispersion sum-rule constraint ${{\overline{\mathit \alpha}}}$ $+$ ${{\overline{\mathit \beta}}}$ = ($14.2$ $\pm0.5$) $ \times 10^{-4}$ fm${}^{3}$. Errors here are anticorrelated with those on ${{\overline{\mathit \alpha}}_{{p}}}$ due to this constraint.
VALUE ($ 10^{-4} $ fm${}^{3}$) DOCUMENT ID TECN  COMMENT
$\bf{ 2.5 \pm0.4}$ OUR AVERAGE  Error includes scale factor of 1.2.
$3.15$ $\pm0.35$ $\pm0.36$
MCGOVERN
2013
RVUE ${{\mathit \chi}}$EFT + Compton scattering
$3.4$ $\pm1.1$ $\pm0.1$ 1
BEANE
2003
EFT + ${{\mathit \gamma}}{{\mathit p}}$
$1.43$ $\pm0.98$ ${}^{+0.52}_{-0.98}$ 2
BLANPIED
2001
LEGS ${{\mathit p}}(\vec\gamma,{{\mathit \gamma}}$), ${{\mathit p}}(\vec\gamma,{{\mathit \pi}^{0}}$), ${{\mathit p}}(\vec\gamma,{{\mathit \pi}^{+}}$)
$1.2$ $\pm0.7$ $\pm0.5$ 3
OLMOSDELEON
2001
CNTR ${{\mathit \gamma}}{{\mathit p}}$ Compton scattering
$2.1$ $\pm0.8$ $\pm0.5$ 4
MACGIBBON
1995
RVUE global average
• • • We do not use the following data for averages, fits, limits, etc. • • •
$2.3$ $\pm0.9$ $\pm0.7$ 5
BARANOV
2001
RVUE Global average
$1.7$ $\pm0.6$ $\pm0.9$
MACGIBBON
1995
CNTR ${{\mathit \gamma}}{{\mathit p}}$ Compton scattering
$4.4$ $\pm0.4$ $\pm1.1$
HALLIN
1993
CNTR ${{\mathit \gamma}}{{\mathit p}}$ Compton scattering
$3.58$ ${}^{+1.19}_{-1.25}$ ${}^{+1.03}_{-1.07}$
ZIEGER
1992
CNTR ${{\mathit \gamma}}{{\mathit p}}$ Compton scattering
$3.3$ $\pm2.2$ $\pm1.3$
FEDERSPIEL
1991
CNTR ${{\mathit \gamma}}{{\mathit p}}$ Compton scattering
1  BEANE 2003 uses effective field theory and low-energy ${{\mathit \gamma}}{{\mathit p}}$ and ${{\mathit \gamma}}{{\mathit d}}$ Compton-scattering data. It also gets for the isoscalar polarizabilities (see the erratum) $\alpha _{\mathit N}$= ($13.0$ $\pm1.9$ ${}^{+3.9}_{-1.5}$) $ \times 10^{-4}$ fm${}^{3}$ and $\beta _{\mathit N}$= ($-1.8$ $\pm1.9$ ${}^{+2.1}_{-0.9}$) $ \times 10^{-4}$ fm${}^{3}$.
2  BLANPIED 2001 gives ${{\mathit \alpha}_{{p}}}+{{\mathit \beta}_{{p}}}$ and ${{\mathit \alpha}_{{p}}}−{{\mathit \beta}_{{p}}}$. The separate ${{\mathit \alpha}_{{p}}}$ and ${{\mathit \beta}_{{p}}}$ are provided to us by A.$~$Sandorfi. The first error above is statistics plus systematics; the second is from the model.
3  This OLMOSDELEON 2001 result uses the TAPS data alone, and does not use the (re-evaluated) sum-rule constraint that ${{\mathit \alpha}}+{{\mathit \beta}}$= ($13.8$ $\pm0.4$) $ \times 10^{-4}~$fm${}^{3}$. See the paper for a discussion.
4  MACGIBBON 1995 combine the results of ZIEGER 1992 , FEDERSPIEL 1991 , and their own experiment to get a ``global average'' in which model errors and systematic errors are treated in a consistent way. See MACGIBBON 1995 for a discussion.
5  BARANOV 2001 combines the results of 10 experiments from 1958 through 1995 to get a global average that takes into account both systematic and model errors and does not use the theoretical constraint on the sum $\alpha _{{{\mathit p}}}+\beta _{{{\mathit p}}}$.
  References:
MCGOVERN 2013
EPJ A49 12 Compton Scattering from the Proton in an Effective Field Theory with Explicit Delta Degrees of Freedom
BEANE 2003
PL B567 200 Nucleon Polarizabilities from Low-Energy Compton Scattering
BARANOV 2001
PPN 32 376 Experimental Status of the Electric and Magnetic Polarizabilities of a Proton
BLANPIED 2001
PR C64 025203 ${{\mathit N}}$ $\rightarrow$ ${{\mathit \Delta}}$ Transition and Proton Polarizabilities from Measurements of ${{\mathit p}}$ (${{\mathit \gamma}}↑$, ${{\mathit \gamma}}$), ${{\mathit p}}$ (${{\mathit \gamma}}↑$, ${{\mathit \pi}^{0}}$), and ${{\mathit p}}$ (${{\mathit \gamma}}↑$, ${{\mathit \pi}^{+}}$)
OLMOSDELEON 2001
EPJ A10 207 Low Energy Compton Scattering and the Polarizability of the Proton
MACGIBBON 1995
PR C52 2097 Measurement of the Electric and Magnetic Polarizabilities of the Proton
HALLIN 1993
PR C48 1497 Compton Scattering from the Proton
ZIEGER 1992
PL B278 34 180$^\circ{}$ Compton Scattering by Proton below the Pion Threshold
FEDERSPIEL 1991
PRL 67 1511 Proton Compton Effect: a Measurement of the Electric and Magnetic Polarizabilities of the Proton