${{\mathit p}}$ MEAN LIFE

INSPIRE   PDGID:
S016T
A test of baryon conservation. See the “${{\mathit p}}$ Partial Mean Lives” section below for limits for identified final states. The limits here are to “anything” or are for “disappearance” modes of a bound proton (${{\mathit p}}$) or (${{\mathit n}}$). See also the 3${{\mathit \nu}}$ modes in the “Partial Mean Lives” section. Table$~$1 of BACK 2003 is a nice summary.
LIMIT (years) PARTICLE CL% DOCUMENT ID TECN  COMMENT
$ \bf{>0.96 \times 10^{30}} $ $\bf{{{\mathit p}}}$ 90 1
ALLEGA
2022
SNO+ ${{\mathit p}}$ $\rightarrow$ invisible
$ \bf{>0.9 \times 10^{30}} $ $\bf{{{\mathit n}}}$ 90 2
ALLEGA
2022
SNO+ ${{\mathit n}}$ $\rightarrow$ invisible
• • We do not use the following data for averages, fits, limits, etc. • •
$ >3.6 \times 10^{29} $ ${{\mathit p}}$ 90 3
ANDERSON
2019A
SNO+ ${{\mathit p}}$ $\rightarrow$ invisible
$ >2.5 \times 10^{29} $ ${{\mathit n}}$ 90 3
ANDERSON
2019A
SNO+ ${{\mathit n}}$ $\rightarrow$ invisible
$ >5.8 \times 10^{29} $ ${{\mathit n}}$ 90 4
ARAKI
2006
KLND ${{\mathit n}}$ $\rightarrow$ invisible
$ >2.1 \times 10^{29} $ ${{\mathit p}}$ 90 3
AHMED
2004
SNO ${{\mathit p}}$ $\rightarrow$ invisible
$ >1.9 \times 10^{29} $ ${{\mathit n}}$ 90 3
AHMED
2004
SNO ${{\mathit n}}$ $\rightarrow$ invisible
$ >1.8 \times 10^{25} $ ${{\mathit n}}$ 90 5
BACK
2003
BORX
$ >1.1 \times 10^{26} $ ${{\mathit p}}$ 90 5
BACK
2003
BORX
$ >3.5 \times 10^{28} $ ${{\mathit p}}$ 90 6
ZDESENKO
2003
${{\mathit p}}$ $\rightarrow$ invisible
$ >1 \times 10^{28} $ ${{\mathit p}}$ 90 7
AHMAD
2002
SNO ${{\mathit p}}$ $\rightarrow$ invisible
$ >4 \times 10^{23} $ ${{\mathit p}}$ 95
TRETYAK
2001
${{\mathit d}}$ $\rightarrow$ ${{\mathit n}}{+}$ ?
$ >1.9 \times 10^{24} $ ${{\mathit p}}$ 90 8
BERNABEI
2000B
DAMA
$ >1.6 \times 10^{25} $ ${{\mathit p}}$, ${{\mathit n}}$ 9, 10
EVANS
1977
$ >3 \times 10^{23} $ ${{\mathit p}}$ 10
DIX
1970
CNTR
$ >3 \times 10^{23} $ ${{\mathit p}}$, ${{\mathit n}}$ 11, 10
FLEROV
1958
1  ALLEGA 2022 look for ${{\mathit \gamma}}$ rays from the de-excitation of a residual ${}^{15}\mathrm {N}{}^{*}$ following the disappearance of ${{\mathit p}}$ in ${}^{16}\mathrm {O}$.
2  ALLEGA 2022 look for ${{\mathit \gamma}}$ rays from the de-excitation of a residual ${}^{15}\mathrm {O}{}^{*}$ following the disappearance of ${{\mathit n}}$ in ${}^{16}\mathrm {O}$.
3  AHMED 2004 and ANDERSON 2019A look for ${{\mathit \gamma}}$ rays from the de-excitation of a residual ${}^{15}\mathrm {O}{}^{*}$ or ${}^{15}\mathrm {N}{}^{*}$ following the disappearance of a neutron or proton in ${}^{16}\mathrm {O}$.
4  ARAKI 2006 looks for signs of de-excitation of the residual nucleus after disappearance of a neutron from the $\mathit s$ shell of ${}^{12}\mathrm {C}$.
5  BACK 2003 looks for decays of unstable nuclides left after ${{\mathit N}}$ decays of parent ${}^{12}\mathrm {C}$, ${}^{13}\mathrm {C}$, ${}^{16}\mathrm {O}$ nuclei. These are ``invisible channel'' limits.
6  ZDESENKO 2003 gets this limit on proton disappearance in deuterium by analyzing SNO data in AHMAD 2002 .
7  AHMAD 2002 (see its footnote 7) looks for neutrons left behind after the disappearance of the proton in deuterons.
8  BERNABEI 2000B looks for the decay of a ${}^{128}_{53}{}^{}\mathrm {I}$ nucleus following the disappearance of a proton in the otherwise-stable ${}^{129}_{54}{}^{}\mathrm {Xe}$ nucleus.
9  EVANS 1977 looks for the daughter nuclide ${}^{129}\mathrm {Xe}$ from possible ${}^{130}\mathrm {Te}$ decays in ancient Te ore samples.
10  This mean-life limit has been obtained from a half-life limit by dividing the latter by ln(2) = 0.693.
11  FLEROV 1958 looks for the spontaneous fission of a ${}^{232}\mathrm {Th}$ nucleus after the disappearance of one of its nucleons.
Conservation Laws:
BARYON NUMBER
References:
ALLEGA 2022
PR D105 112012 Improved search for invisible modes of nucleon decay in water with the SNO+detector
ANDERSON 2019A
PR D99 032008 Search for invisible modes of nucleon decay in water with the SNO+ detector
ARAKI 2006
PRL 96 101802 Search for the Invisible Decay of Neutrons with KamLAND
AHMED 2004
PRL 92 102004 Constraints on Nucleon Decay via ``Invisible'' Modes from the Sudbury Neutrino Observatory
BACK 2003
PL B563 23 New Limits on Nucleon Decays into Invisible Channels with the BOREXINO Counting Test Facility (CTF-II)
ZDESENKO 2003
PL B553 135 To what Extent does the Latest SNO Result Guarantee the Proton Stability?
AHMAD 2002
PRL 89 011301 Direct Evidence for Neutrino Flavor Transformation from Neutral Current Interactions in the Sudbury Neutrino Observatory
TRETYAK 2001
PL B505 59 Experimental Limits on the Proton Lifetime from the Neutrino Experiments with Heavy Water
BERNABEI 2000B
PL B493 12 Search for the Nucleon and di-Nucleon Decay into Invisible Channels
EVANS 1977
SCI 197 989 Nucleon Stability: a Geochemical Test Independent of Decay Mode
DIX 1970
Thesis Case Search for Proton Decay as a Test of Baryon Conservation
FLEROV 1958
DOKL 3 79 Spontaneous Fission of ${}^{232}\mathrm {Th}$ and the Stability of Nucleons