${{\mathit n}}$ ELECTRIC POLARIZABILITY ${{\mathit \alpha}_{{{n}}}}$

INSPIRE   PDGID:
S017EPL
Following is the electric polarizability $\alpha _{\mathit n}$ defined in terms of the induced electric dipole moment by $\mathbf {D}$ = 4$\pi \epsilon _{0}\alpha _{\mathit n}\mathbf {E}$. For a review, see SCHMIEDMAYER 1989.

For a very complete reviews of the polarizability of the nucleon and Compton scattering, see SCHUMACHER 2005, updated in SCHUMACHER 2019, and GRIESSHAMMER 2012.
VALUE ($ 10^{-4} $ fm${}^{3}$) DOCUMENT ID TECN  COMMENT
$\bf{ 11.8 \pm1.1}$ OUR AVERAGE
$11.55$ $\pm1.25$ $\pm0.8$
MYERS
2014
CNTR ${{\mathit \gamma}}$ ${{\mathit d}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit d}}$
$12.5$ $\pm1.8$ ${}^{+1.6}_{-1.3}$ 1
KOSSERT
2003
CNTR ${{\mathit \gamma}}$ ${{\mathit d}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit p}}{{\mathit n}}$
$12.0$ $\pm1.5$ $\pm2.0$
SCHMIEDMAYER
1991
CNTR ${{\mathit n}}{}^{}\mathrm {Pb}$ transmission
$10.7$ ${}^{+3.3}_{-10.7}$
ROSE
1990B
CNTR ${{\mathit \gamma}}$ ${{\mathit d}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit n}}{{\mathit p}}$
• • We do not use the following data for averages, fits, limits, etc. • •
$8.8$ $\pm2.4$ $\pm3.0$ 2
LUNDIN
2003
CNTR ${{\mathit \gamma}}$ ${{\mathit d}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit d}}$
$13.6$ 3
KOLB
2000
CNTR ${{\mathit \gamma}}$ ${{\mathit d}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit n}}{{\mathit p}}$
$0.0$ $\pm5.0$ 4
KOESTER
1995
CNTR ${{\mathit n}}{}^{}\mathrm {Pb}$, ${{\mathit n}}{}^{}\mathrm {Bi}$ transmission
$11.7$ ${}^{+4.3}_{-11.7}$
ROSE
1990
CNTR See ROSE 1990B
$8$ $\pm10$
KOESTER
1988
CNTR ${{\mathit n}}{}^{}\mathrm {Pb}$, ${{\mathit n}}{}^{}\mathrm {Bi}$ transmission
$12$ $\pm10$
SCHMIEDMAYER
1988
CNTR ${{\mathit n}}{}^{}\mathrm {Pb}$, ${{\mathit n}}{}^{}\mathrm {C}$ transmission
1  KOSSERT 2003 gets $\alpha _{{{\mathit n}}}−\beta _{{{\mathit n}}}$ =($9.8$ $\pm3.6$ ${}^{+2.1}_{-1.1}\pm2.2){\times }10^{-4}~$fm${}^{3}$, and uses $\alpha _{{{\mathit n}}}+\beta _{{{\mathit n}}}$ = ($15.2$ $\pm0.5$) $ \times 10^{-4}~$fm${}^{3}$ from LEVCHUK 2000. Thus the errors on $\alpha _{{{\mathit n}}}$ and $\beta _{{{\mathit n}}}$ are anti-correlated.
2  LUNDIN 2003 measures $\alpha _{\mathit N}−\beta _{\mathit N}$ = ($6.4$ $\pm2.4$) $ \times 10^{-4}$ fm${}^{3}$ and uses accurate values for $\alpha _{{{\mathit p}}}$ and $\alpha _{{{\mathit p}}}$ and a precise sum-rule result for $\alpha _{{{\mathit n}}}+\beta _{{{\mathit n}}}$. The second error is a model uncertainty, and errors on $\alpha _{{{\mathit n}}}$ and $\beta _{{{\mathit n}}}$ are anticorrelated. The data from this paper aer included in the analysis of MYERS 2014.
3  KOLB 2000 obtains this value with a lower limit of $7.6 \times 10^{-4}~$fm${}^{3}$ but no upper limit from this experiment alone. Combined with results of ROSE 1990, the 1-$\sigma $ range is ($7.6 - 14.0){\times }10^{-4}~$fm${}^{3}$.
4  KOESTER 1995 uses natural Pb and the isotopes 208, 207, and 206. See this paper for a discussion of methods used by various groups to extract $\alpha _{{{\mathit n}}}$ from data.
References