${{\mathit n}}$ MAGNETIC POLARIZABILITY ${{\mathit \beta}_{{{n}}}}$

INSPIRE   PDGID:
S017MPL
VALUE ($ 10^{-4} $ fm${}^{3}$) DOCUMENT ID TECN  COMMENT
$\bf{ 3.7 \pm1.2}$ OUR AVERAGE
$3.65$ $\pm1.25$ $\pm0.8$
MYERS
2014
CNTR ${{\mathit \gamma}}$ ${{\mathit d}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit d}}$
$2.7$ $\pm1.8$ ${}^{+1.3}_{-1.6}$ 1
KOSSERT
2003
CNTR ${{\mathit \gamma}}$ ${{\mathit d}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit p}}{{\mathit n}}$
$6.5$ $\pm2.4$ $\pm3.0$ 2
LUNDIN
2003
CNTR ${{\mathit \gamma}}$ ${{\mathit d}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit d}}$
• • We do not use the following data for averages, fits, limits, etc. • •
$1.6$ 3
KOLB
2000
CNTR ${{\mathit \gamma}}$ ${{\mathit d}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit n}}{{\mathit p}}$
1  KOSSERT 2003 gets $\alpha _{{{\mathit n}}}−\beta _{{{\mathit n}}}$ =($9.8$ $\pm3.6$ ${}^{+2.1}_{-1.1}\pm2.2){\times }10^{-4}~$fm${}^{3}$, and uses $\alpha _{{{\mathit n}}}+\beta _{{{\mathit n}}}$ = ($15.2$ $\pm0.5$) $ \times 10^{-4}~$fm${}^{3}$ from LEVCHUK 2000. Thus the errors on $\alpha _{{{\mathit n}}}$ and $\beta _{{{\mathit n}}}$ are anti-correlated.
2  LUNDIN 2003 measures $\alpha _{\mathit N}−\beta _{\mathit N}$ = ($6.4$ $\pm2.4$) $ \times 10^{-4}$ fm${}^{3}$ and uses accurate values for $\alpha _{{{\mathit p}}}$ and $\alpha _{{{\mathit p}}}$ and a precise sum-rule result for $\alpha _{{{\mathit n}}}+\beta _{{{\mathit n}}}$. The second error is a model uncertainty, and errors on $\alpha _{{{\mathit n}}}$ and $\beta _{{{\mathit n}}}$ are anticorrelated.
3  KOLB 2000 obtains this value with an upper limit of $7.6 \times 10^{-4}~$fm${}^{3}$ but no lower limit from this experiment alone. Combined with results of ROSE 1990, the 1-$\sigma $ range is ($1.2 - 7.6){\times }10^{-4}~$fm${}^{3}$.
References