Charged Heavy Lepton MASS LIMITS

Sequential Charged Heavy Lepton (${{\mathit L}^{\pm}}$) MASS LIMITS

INSPIRE   PDGID:
S025MS
These experiments assumed that a fourth generation ${{\mathit L}^{\pm}}$ decayed to a fourth generation ${{\mathit \nu}_{{{L}}}}$ (or ${{\mathit L}^{0}}$) where ${{\mathit \nu}_{{{L}}}}$ was stable, or that ${{\mathit L}^{\pm}}$ decays to a light ${{\mathit \nu}_{{{{{\mathit \ell}}}}}}$ via mixing.

See the “Quark and Lepton Compositeness, Searches for” Listings for limits on radiatively decaying excited leptons, $\mathit i.e.$ ${{\mathit \ell}^{*}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \gamma}}$. See the “WIMPs and other Particle Searches” section for heavy charged particle search limits in which the charged particle could be a lepton.

CL% DOCUMENT ID TECN  COMMENT
$\bf{>100.8}$ 95
ACHARD
2001B
L3 Decay to ${{\mathit \nu}}{{\mathit W}}$
$>101.9$ 95
ACHARD
2001B
L3 ${\mathit m}_{{{\mathit L}}}–{\mathit m}_{{{\mathit L}^{0}}}>15$ GeV
• • We do not use the following data for averages, fits, limits, etc. • •
$>81.5$ 95
ACKERSTAFF
1998C
OPAL Assumed ${\mathit m}_{{{\mathit L}^{\pm}}}–{\mathit m}_{{{\mathit L}^{0}}}>8.4$ GeV
$>80.2$ 95
ACKERSTAFF
1998C
OPAL ${\mathit m}_{{{\mathit L}^{0}}}>{\mathit m}_{{{\mathit L}^{\pm}}}$ and ${{\mathit L}^{\pm}}$ $\rightarrow$ ${{\mathit \nu}}{{\mathit W}}$
$\text{<48 or >61}$ 95 1
ACCIARRI
1996G
L3
$>63.9$ 95
ALEXANDER
1996P
OPAL Decay to massless ${{\mathit \nu}}$'s
$>63.5$ 95
BUSKULIC
1996S
ALEP ${\mathit m}_{{{\mathit L}}}–{\mathit m}_{{{\mathit L}^{0}}}$ $>7$ GeV
$>65$ 95
BUSKULIC
1996S
ALEP Decay to massless ${{\mathit \nu}}$'s
$\text{none 10 - 225}$ 2
AHMED
1994
CNTR H1 Collab. at HERA
$\text{none 12.6 - 29.6}$ 95
KIM
1991B
AMY Massless ${{\mathit \nu}}$ assumed
$>44.3$ 95
AKRAWY
1990G
OPAL
$\text{none 0.5 - 10}$ 95 3
RILES
1990
MRK2 For (${\mathit m}_{{{\mathit L}^{0}}}-{\mathit m}_{{{\mathit L}^{0}}})>0.25 - 0.4$GeV
$>8$ 4
STOKER
1989
MRK2 For (${\mathit m}_{{{\mathit L}^{+}}}–{\mathit m}_{{{\mathit L}^{0}}}$)= $0.4$ GeV
$>12$ 4
STOKER
1989
MRK2 For ${\mathit m}_{{{\mathit L}^{0}}}=0.9$ GeV
$\text{none 18.4 - 27.6}$ 95 5
ABE
1988
VNS
$>25.5$ 95 6
ADACHI
1988B
TOPZ
$\text{none 1.5 - 22.0}$ 95
BEHREND
1988C
CELL
$>41$ 90 7
ALBAJAR
1987B
UA1
$>22.5$ 95 8
ADEVA
1985
MRKJ
$>18.0$ 95 9
BARTEL
1983
JADE
$\text{none 4-14.5}$ 95 10
BERGER
1981B
PLUT
$>15.5$ 95 11
BRANDELIK
1981
TASS
$>13.$ 12
AZIMOV
1980
$>16.$ 95 13
BARBER
1980B
CNTR
$>0.490$ 14
ROTHE
1969
RVUE
1  ACCIARRI 1996G assumes LEP result that the associated neutral heavy lepton mass $>40$ GeV.
2  The AHMED 1994 limits are from a search for neutral and charged sequential heavy leptons at HERA via the decay channels ${{\mathit L}^{-}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \gamma}}$, ${{\mathit L}^{-}}$ $\rightarrow$ ${{\mathit \nu}}{{\mathit W}^{-}}$, ${{\mathit L}^{-}}$ $\rightarrow$ ${{\mathit e}}{{\mathit Z}}$; and ${{\mathit L}^{0}}$ $\rightarrow$ ${{\mathit \nu}}{{\mathit \gamma}}$, ${{\mathit L}^{0}}$ $\rightarrow$ ${{\mathit e}^{-}}{{\mathit W}^{+}}$, ${{\mathit L}^{-}}$ $\rightarrow$ ${{\mathit \nu}}{{\mathit Z}}$, where the ${{\mathit W}}$ decays to ${{\mathit \ell}}{{\mathit \nu}_{{{{{\mathit \ell}}}}}}$, or to jets, and ${{\mathit Z}}$ decays to ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$ or jets.
3  RILES 1990 limits were the result of a special analysis of the data in the case where the mass difference ${\mathit m}_{{{\mathit L}^{-}}}–{\mathit m}_{{{\mathit L}^{0}}}$ was allowed to be quite small, where ${{\mathit L}^{0}}$ denotes the neutrino into which the sequential charged lepton decays. With a slightly reduced ${\mathit m}_{{{\mathit L}^{\pm}}}$ range, the mass difference extends to about 4 GeV.
4  STOKER 1989 (Mark II at PEP) gives bounds on charged heavy lepton (${{\mathit L}^{+}}$) mass for the generalized case in which the corresponding neutral heavy lepton (${{\mathit L}^{0}}$) in the SU(2) doublet is not of negligible mass.
5  ABE 1988 search for ${{\mathit L}^{+}}$ and ${{\mathit L}^{-}}$ $\rightarrow$ hadrons looking for acoplanar jets. The bound is valid for ${\mathit m}_{{{\mathit \nu}}}$ $<$ 10 GeV.
6  ADACHI 1988B search for hadronic decays giving acoplanar events with large missing energy. E$_{{\mathrm {cm}}}{}^{}$ = 52 GeV.
7  Assumes associated neutrino is approximately massless.
8  ADEVA 1985 analyze one-isolated-muon data and sensitive to ${{\mathit \tau}}$ $<$10 nanosec. Assume B(lepton) = 0.30. $\mathit E_{{\mathrm {cm}}}$ = 40$-$47 GeV.
9  BARTEL 1983 limit is from PETRA ${{\mathit e}^{+}}{{\mathit e}^{-}}$ experiment with average $\mathit E_{{\mathrm {cm}}}$ = 34.2 GeV.
10  BERGER 1981B is DESY DORIS and PETRA experiment. Looking for ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit L}^{+}}{{\mathit L}^{-}}$.
11  BRANDELIK 1981 is DESY-PETRA experiment. Looking for ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit L}^{+}}{{\mathit L}^{-}}$.
12  AZIMOV 1980 estimated probabilities for ${{\mathit M}}$ + ${{\mathit N}}$ type events in ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit L}^{+}}{{\mathit L}^{-}}$ deducing semi-hadronic decay multiplicities of ${{\mathit L}}$ from ${{\mathit e}^{+}}{{\mathit e}^{-}}$ annihilation data at $\mathit E_{{\mathrm {cm}}}$ = (2/3)${}{\mathit m}_{{{\mathit L}}}$. Obtained above limit comparing these with ${{\mathit e}^{+}}{{\mathit e}^{-}}$ data (BRANDELIK 1980).
13  BARBER 1980B looked for ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit L}^{+}}{{\mathit L}^{-}}$, ${{\mathit L}}$ $\rightarrow$ ${{\mathit \nu}_{{{L}}}^{+}}$ X with MARK-J at DESY-PETRA.
14  ROTHE 1969 examines previous data on ${{\mathit \mu}}$ pair production and ${{\mathit \pi}}$ and ${{\mathit K}}$ decays.
References