Quark Flux $-$ Accelerator Searches

INSPIRE   PDGID:
S027FR
The definition of FLUX depends on the experiment

(a)is the ratio of measured free quarks to predicted free quarks if there is no “confinement.''
(b)is the probability of fractional charge on nuclear fragments. Energy is in GeV/nucleon.
(c)is the 90$\%$CL upper limit on fractionally-charged particles produced per interaction.
(d)is quarks per collision.
(e)is inclusive quark-production cross-section ratio to ${\mathit \sigma (}$ ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}{)}$.
(f)is quark flux per charged particle.
(g)is the flux per ${{\mathit \nu}}$-event.
(h)is quark yield per ${{\mathit \pi}^{-}}$ yield.
(i)is 2-body exclusive quark-production cross-section ratio to ${\mathit \sigma (}$ ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}{)}$.
FLUX CHG ${\mathrm {(\mathit e/3)}}$ MASS ${\mathrm {(GeV)}}$ ENRGY ${\mathrm {(GeV)}}$ BEAM EVTS DOCUMENT ID TECN
$ \text{<1.6E-3} $ b see note $200$ ${}^{32}\mathrm {S}-{}^{}\mathrm {Pb}$ 0 1
HUENTRUP
1996
PLAS
$ \text{<6.2E-4} $ b see note $10.6$ ${}^{32}\mathrm {S}-{}^{}\mathrm {Pb}$ 0 1
HUENTRUP
1996
PLAS
$ \text{<0.94E-4} $ e $\pm2$ $2 - 30$ $88 - 94$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
AKERS
1995R
OPAL
$ \text{<1.7E-4} $ e $\pm2$ $30 - 40$ $88 - 94$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
AKERS
1995R
OPAL
$ \text{<3.6E-4} $ e $\pm4$ $5 - 30$ $88 - 94$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
AKERS
1995R
OPAL
$ \text{<1.9E-4} $ e $\pm4$ $30 - 45$ $88 - 94$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
AKERS
1995R
OPAL
$ \text{<2.E-3} $ e $+1$ $5 - 40$ $88 - 94$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0 2
BUSKULIC
1993C
ALEP
$ \text{<6.E-4} $ e $+2$ $5 - 30$ $88 - 94$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0 2
BUSKULIC
1993C
ALEP
$ \text{<1.2E-3} $ e $+4$ $15 - 40$ $88 - 94$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0 2
BUSKULIC
1993C
ALEP
$ \text{<3.6E-4} $ i $+4$ $5.0 - 10.2$ $88 - 94$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
BUSKULIC
1993C
ALEP
$ \text{<3.6E-4} $ i $+4$ $16.5 - 26.0$ $88 - 94$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
BUSKULIC
1993C
ALEP
$ \text{<6.9E-4} $ i $+4$ $26.0 - 33.3$ $88 - 94$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
BUSKULIC
1993C
ALEP
$ \text{<9.1E-4} $ i $+4$ $33.3 - 38.6$ $88 - 94$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
BUSKULIC
1993C
ALEP
$ \text{<1.1E-3} $ i $+4$ $38.6 - 44.9$ $88 - 94$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
BUSKULIC
1993C
ALEP
$ \text{<1.6E-4} $ b see note see note 0 3
CECCHINI
1993
PLAS
$ \text{} $ b 4,5,7,8 $2.1$A ${}^{16}\mathrm {O}$ 0,2,0,6 4
GHOSH
1992
EMUL
$ \text{<6.4E-5} $ g 1 ${{\mathit \nu}},{{\overline{\mathit \nu}}}$ 1 5
BASILE
1991
CNTR
$ \text{<3.7E-5} $ g 2 ${{\mathit \nu}},{{\overline{\mathit \nu}}}$ 0 5
BASILE
1991
CNTR
$ \text{<3.9E-5} $ g 1 ${{\mathit \nu}},{{\overline{\mathit \nu}}}$ 1 6
BASILE
1991
CNTR
$ \text{<2.8E-5} $ g 2 ${{\mathit \nu}},{{\overline{\mathit \nu}}}$ 0 6
BASILE
1991
CNTR
$ \text{<1.9E-4} $ c $14.5$A ${}^{28}\mathrm {Si}-$Pb 0 7
HE
1991
PLAS
$ \text{<3.9E-4} $ c $14.5$A ${}^{28}\mathrm {Si}-$Cu 0 7
HE
1991
PLAS
$ \text{<1.E-9} $ c $\pm1$,2,4 $14.5$A ${}^{16}\mathrm {O}-$Ar 0
MATIS
1991
MDRP
$ \text{<5.1E-10} $ c $\pm1$,2,4 $14.5$A ${}^{16}\mathrm {O}-$Hg 0
MATIS
1991
MDRP
$ \text{<8.1E-9} $ c $\pm1$,2,4 $14.5$A Si$-$Hg 0
MATIS
1991
MDRP
$ \text{<1.7E-6} $ c $\pm1$,2,4 60A ${}^{16}\mathrm {O}-$Hg 0
MATIS
1991
MDRP
$ \text{<3.5E-7} $ c $\pm1$,2,4 200A ${}^{16}\mathrm {O}-$Hg 0
MATIS
1991
MDRP
$ \text{<1.3E-6} $ c $\pm1$,2,4 200A S$-$Hg 0
MATIS
1991
MDRP
$ \text{<5E-2} $ e 2 $19 - 27$ $52 - 60$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
ADACHI
1990C
TOPZ
$ \text{<5E-2} $ e 4 $<$24 $52 - 60$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
ADACHI
1990C
TOPZ
$ \text{<1.E-4} $ e $+2$ <3.5 $10$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
BOWCOCK
1989B
CLEO
$ \text{<1.E-6} $ d $\pm1$,2 $60$ ${}^{16}\mathrm {O}-$Hg 0
CALLOWAY
1989
MDRP
$ \text{<3.5E-7} $ d $\pm1$,2 $200$ ${}^{16}\mathrm {O}-$Hg 0
CALLOWAY
1989
MDRP
$ \text{<1.3E-6} $ d $\pm1$,2 $200$ ${}^{}\mathrm {S}-$Hg 0
CALLOWAY
1989
MDRP
$ \text{<1.2E-10} $ d $\pm1$ $1$ $800$ ${{\mathit p}}-{}^{}\mathrm {Hg}$ 0
MATIS
1989
MDRP
$ \text{<1.1E-10} $ d $\pm2$ $1$ $800$ ${{\mathit p}}-{}^{}\mathrm {Hg}$ 0
MATIS
1989
MDRP
$ \text{<1.2E-10} $ d $\pm1$ $1$ $800$ ${{\mathit p}}-{}^{}\mathrm {N}_{2}$ 0
MATIS
1989
MDRP
$ \text{<7.7E-11} $ d $\pm2$ $1$ $800$ ${{\mathit p}}-{}^{}\mathrm {N}_{2}$ 0
MATIS
1989
MDRP
$ \text{<6.E-9} $ h $-5$ $0.9 - 2.3$ $12$ ${{\mathit p}}$ 0
NAKAMURA
1989
SPEC
$ \text{<5.E-5} $ g 1,2 <0.5 ${{\mathit \nu}},{{\overline{\mathit \nu}}}{{\mathit d}}$ 0
ALLASIA
1988
BEBC
$ \text{<3.E-4} $ b See note $14.5$ ${}^{16}\mathrm {O}-{}^{}\mathrm {Pb}$ 0 8
HOFFMANN
1988
PLAS
$ \text{<2.E-4} $ b See note $200$ ${}^{16}\mathrm {O}-{}^{}\mathrm {Pb}$ 0 9
HOFFMANN
1988
PLAS
$ \text{<8E-5} $ b 19,20,22,23 200$\mathit A$
GERBIER
1987
PLAS
$ \text{<2.E-4} $ a $\pm1$,2 <300 $320$ ${{\overline{\mathit p}}}{{\mathit p}}$ 0
LYONS
1987
MLEV
$ \text{<1.E-9} $ c $\pm1$,2,4,5 $14.5$ ${}^{16}\mathrm {O}-{}^{}\mathrm {Hg}$ 0
SHAW
1987
MDRP
$ \text{<3.E-3} $ d $-1$,2,3,4,6 <5 $2$ ${}^{}\mathrm {Si}-{}^{}\mathrm {Si}$ 0 10
ABACHI
1986C
CNTR
$ \text{<1.E-4} $ e $\pm1$,2,4 <4 $10$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
ALBRECHT
1985G
ARG
$ \text{<6.E-5} $ b $\pm1$,2 1 $540$ ${{\mathit p}}{{\overline{\mathit p}}}$ 0
BANNER
1985
UA2
$ \text{<5.E-3} $ e $-4$ 1$-$8 $29$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
AIHARA
1984
TPC
$ \text{<1.E-2} $ e $\pm1$,2 1$-$13 $29$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
AIHARA
1984B
TPC
$ \text{<2.E-4} $ b $\pm1$ $72$ ${}^{40}\mathrm {Ar}$ 0 11
BARWICK
1984
CNTR
$ \text{<1.E-4} $ e $\pm2$ <0.4 $1.4$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
BONDAR
1984
OLYA
$ \text{<5.E-1} $ e $\pm1$,2 <13 $29$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
GURYN
1984
CNTR
$ \text{<3.E-3} $ b $\pm1$,2 <2 $540$ ${{\mathit p}}{{\overline{\mathit p}}}$ 0
BANNER
1983
CNTR
$ \text{<1.E-4} $ b $\pm1$,2 $106$ ${}^{56}\mathrm {Fe}$ 0
LINDGREN
1983
CNTR
$ \text{<3.E-3} $ b $>\vert \pm0.1\vert $ $74$ ${}^{40}\mathrm {Ar}$ 0 11
PRICE
1983
PLAS
$ \text{<1.E-2} $ e $\pm1$,2 <14 $29$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
MARINI
1982B
CNTR
$ \text{<8.E-2} $ e $\pm1$,2 <12 $29$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
ROSS
1982
CNTR
$ \text{<3.E-4} $ e $\pm2$ $1.8-$2 $7$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
WEISS
1981
MRK2
$ \text{<5.E-2} $ e $+1$,2,4,5 2$-$12 $27$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
BARTEL
1980
JADE
$ \text{<2.E-5} $ g $1$,2 ${{\mathit \nu}}$ 0 6, 5
BASILE
1980
CNTR
$ \text{<3.E-10} $ f $\pm2$,4 1$-$3 $200$ ${{\mathit p}}$ 0 12
BOZZOLI
1979
CNTR
$ \text{<6.E-11} $ f $\pm1$ <21 $52$ ${{\mathit p}}{{\mathit p}}$ 0
BASILE
1978
SPEC
$ \text{<5.E-3} $ g ${{\mathit \nu}_{{{\mu}}}}$ 0
BASILE
1978B
CNTR
$ \text{<2.E-9} $ f $\pm1$ <26 $62$ ${{\mathit p}}{{\mathit p}}$ 0
BASILE
1977
SPEC
$ \text{<7.E-10} $ f $+1$,2 <20 $52$ ${{\mathit p}}$ 0 13
FABJAN
1975
CNTR
$ $ $+1$,2 >4.5 ${{\mathit \gamma}}$ 0 6, 5
GALIK
1974
CNTR
$ $ $+1$,2 >1.5 $12$ ${{\mathit e}^{-}}$ 0 6, 5
BELLAMY
1968
CNTR
$ $ $+1$,2 >0.9 ${{\mathit \gamma}}$ 0 6
BATHOW
1967
CNTR
$ $ $+1$,2 >0.9 $6$ ${{\mathit \gamma}}$ 0 6
FOSS
1967
CNTR
1  HUENTRUP 1996 quote 95$\%$ CL limits for production of fragments with charge differing by as much as $\pm1$/3 (in units of e) for charge 6${}\leq{}Z{}\leq{}$10.
2  BUSKULIC 1993C limits for inclusive quark production are more conservative if the ALEPH hadronic fragmentation function is assumed.
3  CECCHINI 1993 limit at 90$\%$CL for 23/3 ${}\leq{}Z{}\leq{}$40/3, for 16$\mathit A$ GeV O, 14.5$\mathit A$ Si, and 200$\mathit A$ S incident on Cu target. Other limits are $2.3 \times 10^{-4}$ for 17/3${}\leq{}Z{}\leq{}$20/3 and $1.2 \times 10^{-4}$ for 20/3 ${}\leq{}Z{}\leq{}$23/3.
4  GHOSH 1992 reports measurement of spallation fragment charge based on ionization in emulsion. Out of 650 measured tracks, 2 were consistent with charge 5${{\mathit e}}$/3, and 4 with 7${{\mathit e}}$/3.
5  Hadronic quark.
6  Leptonic quark.
7  HE 1991 limits are for charges of the form $\mathit N\pm1$/3 from 23/3 to 38/3, and correspond to cross-section limits of 380$\mu $b$~$(Pb) and 320$\mu $b$~$(Cu).
8  The limits apply to projectile fragment charges of 17, 19, 20, 22, 23 in units of $\mathit e$/3.
9  The limits apply to projectile fragment charges of 16, 17, 19, 20, 22, 23 in units of $\mathit e$/3.
10  Flux limits and mass range depend on charge.
11  Bound to nuclei.
12  Quark lifetimes $>1 \times 10^{-8}$ s.
13  One candidate $\mathit m$ $<$0.17 GeV.
References