Quark Flux $-$ Accelerator Searches

INSPIRE   JSON  (beta) PDGID:
S027FR
The definition of FLUX depends on the experiment

(a)is the ratio of measured free quarks to predicted free quarks if there is no “confinement.''
(b)is the probability of fractional charge on nuclear fragments. Energy is in GeV/nucleon.
(c)is the 90$\%$CL upper limit on fractionally-charged particles produced per interaction.
(d)is quarks per collision.
(e)is inclusive quark-production cross-section ratio to ${\mathit \sigma (}{{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}{)}$.
(f)is quark flux per charged particle.
(g)is the flux per ${{\mathit \nu}}$-event.
(h)is quark yield per ${{\mathit \pi}^{-}}$ yield.
(i)is 2-body exclusive quark-production cross-section ratio to ${\mathit \sigma (}{{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}{)}$.
FLUX CHG ${\mathrm {(\mathit e/3)}}$ MASS ${\mathrm {(GeV)}}$ ENRGY ${\mathrm {(GeV)}}$ BEAM EVTS DOCUMENT ID TECN
$ \text{<1.6E-3} $ b see note $200$ ${}^{32}\mathrm {S}-{}^{}\mathrm {Pb}$ 0 1
HUENTRUP
1996
 
PLAS
$ \text{<6.2E-4} $ b see note $10.6$ ${}^{32}\mathrm {S}-{}^{}\mathrm {Pb}$ 0 1
HUENTRUP
1996
 
PLAS
$ \text{<0.94E-4} $ e $\pm2$ $2 - 30$ $88 - 94$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
AKERS
1995R
 
OPAL
$ \text{<1.7E-4} $ e $\pm2$ $30 - 40$ $88 - 94$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
AKERS
1995R
 
OPAL
$ \text{<3.6E-4} $ e $\pm4$ $5 - 30$ $88 - 94$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
AKERS
1995R
 
OPAL
$ \text{<1.9E-4} $ e $\pm4$ $30 - 45$ $88 - 94$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
AKERS
1995R
 
OPAL
$ \text{<2.E-3} $ e $+1$ $5 - 40$ $88 - 94$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0 2
BUSKULIC
1993C
 
ALEP
$ \text{<6.E-4} $ e $+2$ $5 - 30$ $88 - 94$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0 2
BUSKULIC
1993C
 
ALEP
$ \text{<1.2E-3} $ e $+4$ $15 - 40$ $88 - 94$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0 2
BUSKULIC
1993C
 
ALEP
$ \text{<3.6E-4} $ i $+4$ $5.0 - 10.2$ $88 - 94$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
BUSKULIC
1993C
 
ALEP
$ \text{<3.6E-4} $ i $+4$ $16.5 - 26.0$ $88 - 94$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
BUSKULIC
1993C
 
ALEP
$ \text{<6.9E-4} $ i $+4$ $26.0 - 33.3$ $88 - 94$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
BUSKULIC
1993C
 
ALEP
$ \text{<9.1E-4} $ i $+4$ $33.3 - 38.6$ $88 - 94$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
BUSKULIC
1993C
 
ALEP
$ \text{<1.1E-3} $ i $+4$ $38.6 - 44.9$ $88 - 94$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
BUSKULIC
1993C
 
ALEP
$ \text{<1.6E-4} $ b see note see note 0 3
CECCHINI
1993
 
PLAS
$ \text{} $ b 4,5,7,8 $2.1$A ${}^{16}\mathrm {O}$ 0,2,0,6 4
GHOSH
1992
 
EMUL
$ \text{<6.4E-5} $ g 1 ${{\mathit \nu}},{{\overline{\mathit \nu}}}$ 1 5
BASILE
1991
 
CNTR
$ \text{<3.7E-5} $ g 2 ${{\mathit \nu}},{{\overline{\mathit \nu}}}$ 0 5
BASILE
1991
 
CNTR
$ \text{<3.9E-5} $ g 1 ${{\mathit \nu}},{{\overline{\mathit \nu}}}$ 1 6
BASILE
1991
 
CNTR
$ \text{<2.8E-5} $ g 2 ${{\mathit \nu}},{{\overline{\mathit \nu}}}$ 0 6
BASILE
1991
 
CNTR
$ \text{<1.9E-4} $ c $14.5$A ${}^{28}\mathrm {Si}-$Pb 0 7
HE
1991
 
PLAS
$ \text{<3.9E-4} $ c $14.5$A ${}^{28}\mathrm {Si}-$Cu 0 7
HE
1991
 
PLAS
$ \text{<1.E-9} $ c $\pm1$,2,4 $14.5$A ${}^{16}\mathrm {O}-$Ar 0
MATIS
1991
 
MDRP
$ \text{<5.1E-10} $ c $\pm1$,2,4 $14.5$A ${}^{16}\mathrm {O}-$Hg 0
MATIS
1991
 
MDRP
$ \text{<8.1E-9} $ c $\pm1$,2,4 $14.5$A Si$-$Hg 0
MATIS
1991
 
MDRP
$ \text{<1.7E-6} $ c $\pm1$,2,4 60A ${}^{16}\mathrm {O}-$Hg 0
MATIS
1991
 
MDRP
$ \text{<3.5E-7} $ c $\pm1$,2,4 200A ${}^{16}\mathrm {O}-$Hg 0
MATIS
1991
 
MDRP
$ \text{<1.3E-6} $ c $\pm1$,2,4 200A S$-$Hg 0
MATIS
1991
 
MDRP
$ \text{<5E-2} $ e 2 $19 - 27$ $52 - 60$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
ADACHI
1990C
 
TOPZ
$ \text{<5E-2} $ e 4 $<$24 $52 - 60$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
ADACHI
1990C
 
TOPZ
$ \text{<1.E-4} $ e $+2$ <3.5 $10$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
BOWCOCK
1989B
 
CLEO
$ \text{<1.E-6} $ d $\pm1$,2 $60$ ${}^{16}\mathrm {O}-$Hg 0
CALLOWAY
1989
 
MDRP
$ \text{<3.5E-7} $ d $\pm1$,2 $200$ ${}^{16}\mathrm {O}-$Hg 0
CALLOWAY
1989
 
MDRP
$ \text{<1.3E-6} $ d $\pm1$,2 $200$ ${}^{}\mathrm {S}-$Hg 0
CALLOWAY
1989
 
MDRP
$ \text{<1.2E-10} $ d $\pm1$ $1$ $800$ ${{\mathit p}}-{}^{}\mathrm {Hg}$ 0
MATIS
1989
 
MDRP
$ \text{<1.1E-10} $ d $\pm2$ $1$ $800$ ${{\mathit p}}-{}^{}\mathrm {Hg}$ 0
MATIS
1989
 
MDRP
$ \text{<1.2E-10} $ d $\pm1$ $1$ $800$ ${{\mathit p}}-{}^{}\mathrm {N}_{2}$ 0
MATIS
1989
 
MDRP
$ \text{<7.7E-11} $ d $\pm2$ $1$ $800$ ${{\mathit p}}-{}^{}\mathrm {N}_{2}$ 0
MATIS
1989
 
MDRP
$ \text{<6.E-9} $ h $-5$ $0.9 - 2.3$ $12$ ${{\mathit p}}$ 0
NAKAMURA
1989
 
SPEC
$ \text{<5.E-5} $ g 1,2 <0.5 ${{\mathit \nu}},{{\overline{\mathit \nu}}}{{\mathit d}}$ 0
ALLASIA
1988
 
BEBC
$ \text{<3.E-4} $ b See note $14.5$ ${}^{16}\mathrm {O}-{}^{}\mathrm {Pb}$ 0 8
HOFFMANN
1988
 
PLAS
$ \text{<2.E-4} $ b See note $200$ ${}^{16}\mathrm {O}-{}^{}\mathrm {Pb}$ 0 9
HOFFMANN
1988
 
PLAS
$ \text{<8E-5} $ b 19,20,22,23 200$\mathit A$
GERBIER
1987
 
PLAS
$ \text{<2.E-4} $ a $\pm1$,2 <300 $320$ ${{\overline{\mathit p}}}{{\mathit p}}$ 0
LYONS
1987
 
MLEV
$ \text{<1.E-9} $ c $\pm1$,2,4,5 $14.5$ ${}^{16}\mathrm {O}-{}^{}\mathrm {Hg}$ 0
SHAW
1987
 
MDRP
$ \text{<3.E-3} $ d $-1$,2,3,4,6 <5 $2$ ${}^{}\mathrm {Si}-{}^{}\mathrm {Si}$ 0 10
ABACHI
1986C
 
CNTR
$ \text{<1.E-4} $ e $\pm1$,2,4 <4 $10$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
ALBRECHT
1985G
 
ARG
$ \text{<6.E-5} $ b $\pm1$,2 1 $540$ ${{\mathit p}}{{\overline{\mathit p}}}$ 0
BANNER
1985
 
UA2
$ \text{<5.E-3} $ e $-4$ 1$-$8 $29$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
AIHARA
1984
 
TPC
$ \text{<1.E-2} $ e $\pm1$,2 1$-$13 $29$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
AIHARA
1984B
 
TPC
$ \text{<2.E-4} $ b $\pm1$ $72$ ${}^{40}\mathrm {Ar}$ 0 11
BARWICK
1984
 
CNTR
$ \text{<1.E-4} $ e $\pm2$ <0.4 $1.4$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
BONDAR
1984
 
OLYA
$ \text{<5.E-1} $ e $\pm1$,2 <13 $29$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
GURYN
1984
 
CNTR
$ \text{<3.E-3} $ b $\pm1$,2 <2 $540$ ${{\mathit p}}{{\overline{\mathit p}}}$ 0
BANNER
1983
 
CNTR
$ \text{<1.E-4} $ b $\pm1$,2 $106$ ${}^{56}\mathrm {Fe}$ 0
LINDGREN
1983
 
CNTR
$ \text{<3.E-3} $ b $>\vert \pm0.1\vert $ $74$ ${}^{40}\mathrm {Ar}$ 0 11
PRICE
1983
 
PLAS
$ \text{<1.E-2} $ e $\pm1$,2 <14 $29$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
MARINI
1982B
 
CNTR
$ \text{<8.E-2} $ e $\pm1$,2 <12 $29$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
ROSS
1982
 
CNTR
$ \text{<3.E-4} $ e $\pm2$ $1.8-$2 $7$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
WEISS
1981
 
MRK2
$ \text{<5.E-2} $ e $+1$,2,4,5 2$-$12 $27$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
BARTEL
1980
 
JADE
$ \text{<2.E-5} $ g $1$,2 ${{\mathit \nu}}$ 0 6, 5
BASILE
1980
 
CNTR
$ \text{<3.E-10} $ f $\pm2$,4 1$-$3 $200$ ${{\mathit p}}$ 0 12
BOZZOLI
1979
 
CNTR
$ \text{<6.E-11} $ f $\pm1$ <21 $52$ ${{\mathit p}}{{\mathit p}}$ 0
BASILE
1978
 
SPEC
$ \text{<5.E-3} $ g ${{\mathit \nu}_{{{\mu}}}}$ 0
BASILE
1978B
 
CNTR
$ \text{<2.E-9} $ f $\pm1$ <26 $62$ ${{\mathit p}}{{\mathit p}}$ 0
BASILE
1977
 
SPEC
$ \text{<7.E-10} $ f $+1$,2 <20 $52$ ${{\mathit p}}$ 0 13
FABJAN
1975
 
CNTR
$ $ $+1$,2 >4.5 ${{\mathit \gamma}}$ 0 6, 5
GALIK
1974
 
CNTR
$ $ $+1$,2 >1.5 $12$ ${{\mathit e}^{-}}$ 0 6, 5
BELLAMY
1968
 
CNTR
$ $ $+1$,2 >0.9 ${{\mathit \gamma}}$ 0 6
BATHOW
1967
 
CNTR
$ $ $+1$,2 >0.9 $6$ ${{\mathit \gamma}}$ 0 6
FOSS
1967
 
CNTR
1  HUENTRUP 1996 quote 95$\%$ CL limits for production of fragments with charge differing by as much as $\pm1$/3 (in units of e) for charge 6${}\leq{}Z{}\leq{}$10.
2  BUSKULIC 1993C limits for inclusive quark production are more conservative if the ALEPH hadronic fragmentation function is assumed.
3  CECCHINI 1993 limit at 90$\%$CL for 23/3 ${}\leq{}Z{}\leq{}$40/3, for 16$\mathit A$ GeV O, 14.5$\mathit A$ Si, and 200$\mathit A$ S incident on Cu target. Other limits are $2.3 \times 10^{-4}$ for 17/3${}\leq{}Z{}\leq{}$20/3 and $1.2 \times 10^{-4}$ for 20/3 ${}\leq{}Z{}\leq{}$23/3.
4  GHOSH 1992 reports measurement of spallation fragment charge based on ionization in emulsion. Out of 650 measured tracks, 2 were consistent with charge 5${{\mathit e}}$/3, and 4 with 7${{\mathit e}}$/3.
5  Hadronic quark.
6  Leptonic quark.
7  HE 1991 limits are for charges of the form $\mathit N\pm1$/3 from 23/3 to 38/3, and correspond to cross-section limits of 380$\mu $b$~$(Pb) and 320$\mu $b$~$(Cu).
8  The limits apply to projectile fragment charges of 17, 19, 20, 22, 23 in units of $\mathit e$/3.
9  The limits apply to projectile fragment charges of 16, 17, 19, 20, 22, 23 in units of $\mathit e$/3.
10  Flux limits and mass range depend on charge.
11  Bound to nuclei.
12  Quark lifetimes $>1 \times 10^{-8}$ s.
13  One candidate $\mathit m$ $<$0.17 GeV.
References