Monopole Production Cross Section $-$ Accelerator Searches

INSPIRE   PDGID:
S028C
X-SECT (cm${}^{2}$) MASS ${\mathrm {(GeV)}}$ CHG ${\mathrm {(\mathit g)}}$ ENERGY ${\mathrm {(GeV)}}$ BEAM DOCUMENT ID TECN
$ \text{<4 E-41} $ $200 - 4000$ $1 - 2$ $13000$ ${{\mathit p}}{{\mathit p}}$ 1
AAD
2023CO
ATLS
$ \text{<4 E-38} $ $590 - 1000$ $1 - 4$ $8000$ ${{\mathit p}}{{\mathit p}}$ 2
ACHARYA
2022A
INDU
$ \text{<2 E-29} $ $0 - 70$ $1 - 3$ $5020$ ${}^{}\mathrm {Pb}{}^{}\mathrm {Pb}$ 3
ACHARYA
2022B
INDU
$ \text{<3 E-38} $ $750 - 1910$ $1 - 5$ $13000$ ${{\mathit p}}{{\mathit p}}$ 4
ACHARYA
2021
INDU
$ \text{<1.3E-40} $ $200 - 4000$ $1$ $13000$ ${{\mathit p}}{{\mathit p}}$ 5
AAD
2020G
ATLS
$ \text{<5.6E-40} $ $500 - 4000$ $2$ $13000$ ${{\mathit p}}{{\mathit p}}$ 5
AAD
2020G
ATLS
$ $ $200 - 5000$ $2$ $13000$ ${{\mathit p}}{{\mathit p}}$ 6
ACHARYA
2019B
INDU
$ $ $200 - 5000$ $1$ $13000$ ${{\mathit p}}{{\mathit p}}$ 7
ACHARYA
2018A
INDU
$ \text{<2.5E-37} $ $200 - 6000$ $1$ $13000$ ${{\mathit p}}{{\mathit p}}$ 8
ACHARYA
2017
INDU
$ \text{<2E-37} $ $200 - 6000$ $2$ $13000$ ${{\mathit p}}{{\mathit p}}$ 8
ACHARYA
2017
INDU
$ \text{<4E-37} $ $200 - 5000$ $3$ $13000$ ${{\mathit p}}{{\mathit p}}$ 8
ACHARYA
2017
INDU
$ \text{<1.5E-36} $ $400 - 4000$ $4$ $13000$ ${{\mathit p}}{{\mathit p}}$ 8
ACHARYA
2017
INDU
$ \text{<7E-36} $ $1000 - 3000$ $5$ $13000$ ${{\mathit p}}{{\mathit p}}$ 8
ACHARYA
2017
INDU
$ \text{<5E-40} $ $200 - 2500$ $0.5 - 2.0$ $8000$ ${{\mathit p}}{{\mathit p}}$ 9
AAD
2016AB
ATLS
$ \text{<2E-37} $ $100 - 3500$ $1$ $8000$ ${{\mathit p}}{{\mathit p}}$ 10
ACHARYA
2016
INDU
$ \text{<2E-37} $ $100 - 3500$ $2$ $8000$ ${{\mathit p}}{{\mathit p}}$ 10
ACHARYA
2016
INDU
$ \text{<6E-37} $ $500 - 3000$ $3$ $8000$ ${{\mathit p}}{{\mathit p}}$ 10
ACHARYA
2016
INDU
$ \text{<7E-36} $ $1000 - 2000$ $4$ $8000$ ${{\mathit p}}{{\mathit p}}$ 10
ACHARYA
2016
INDU
$ \text{<1.6E-38} $ $200 - 1200$ $1$ $7000$ ${{\mathit p}}{{\mathit p}}$ 11
AAD
2012CS
ATLS
$ \text{<5E-38} $ $45 - 102$ $1$ $206$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 12
ABBIENDI
2008
OPAL
$ \text{<0.2E-36} $ $200 - 700$ $1$ $1960$ ${{\mathit p}}{{\overline{\mathit p}}}$ 13
ABULENCIA
2006K
CNTR
$ \text{< 2.E-36} $ $1$ $300$ ${{\mathit e}^{+}}{{\mathit p}}$ 14, 15
AKTAS
2005A
INDU
$ \text{< 0.2 E-36} $ $2$ $300$ ${{\mathit e}^{+}}{{\mathit p}}$ 14, 15
AKTAS
2005A
INDU
$ \text{< 0.09E-36} $ $3$ $300$ ${{\mathit e}^{+}}{{\mathit p}}$ 14, 15
AKTAS
2005A
INDU
$ \text{< 0.05E-36} $ ${}\geq{}$6 $300$ ${{\mathit e}^{+}}{{\mathit p}}$ 14, 15
AKTAS
2005A
INDU
$ \text{< 2.E-36} $ $1$ $300$ ${{\mathit e}^{+}}{{\mathit p}}$ 14, 16
AKTAS
2005A
INDU
$ \text{< 0.2E-36} $ $2$ $300$ ${{\mathit e}^{+}}{{\mathit p}}$ 14, 16
AKTAS
2005A
INDU
$ \text{< 0.07E-36} $ $3$ $300$ ${{\mathit e}^{+}}{{\mathit p}}$ 14, 16
AKTAS
2005A
INDU
$ \text{< 0.06E-36} $ ${}\geq{}$6 $300$ ${{\mathit e}^{+}}{{\mathit p}}$ 14, 16
AKTAS
2005A
INDU
$ \text{<0.6E-36} $ >265 $1$ $1800$ ${{\mathit p}}{{\overline{\mathit p}}}$ 17
KALBFLEISCH
2004
INDU
$ \text{<0.2E-36} $ >355 $2$ $1800$ ${{\mathit p}}{{\overline{\mathit p}}}$ 17
KALBFLEISCH
2004
INDU
$ \text{<0.07E-36} $ >410 $3$ $1800$ ${{\mathit p}}{{\overline{\mathit p}}}$ 17
KALBFLEISCH
2004
INDU
$ \text{<0.2E-36} $ >375 $6$ $1800$ ${{\mathit p}}{{\overline{\mathit p}}}$ 17
KALBFLEISCH
2004
INDU
$ \text{<0.7E-36} $ >295 $1$ $1800$ ${{\mathit p}}{{\overline{\mathit p}}}$ 18, 19
KALBFLEISCH
2000
INDU
$ \text{<7.8E-36} $ >260 $2$ $1800$ ${{\mathit p}}{{\overline{\mathit p}}}$ 18, 19
KALBFLEISCH
2000
INDU
$ \text{<2.3E-36} $ >325 $3$ $1800$ ${{\mathit p}}{{\overline{\mathit p}}}$ 18, 20
KALBFLEISCH
2000
INDU
$ \text{<0.11E-36} $ >420 $6$ $1800$ ${{\mathit p}}{{\overline{\mathit p}}}$ 18, 20
KALBFLEISCH
2000
INDU
$ \text{<0.65E-33} $ <3.3 ${}\geq{}$2 11$\mathit A$ ${}^{197}\mathrm {Au}$ 21, 22
HE
1997
$ \text{<1.90E-33} $ <8.1 ${}\geq{}$2 160$\mathit A$ ${}^{208}\mathrm {Pb}$ 21, 22
HE
1997
$ \text{<3.E-37} $ <45.0 $1.0$ $88 - 94$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$
PINFOLD
1993
PLAS
$ \text{<3.E-37} $ <41.6 $2.0$ $88 - 94$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$
PINFOLD
1993
PLAS
$ \text{<7.E-35} $ <44.9 $0.2 - 1.0$ $89 - 93$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$
KINOSHITA
1992
PLAS
$ \text{<2.E-34} $ <850 ${}\geq{}$0.5 $1800$ ${{\mathit p}}{{\overline{\mathit p}}}$
BERTANI
1990
PLAS
$ \text{<1.2E-33} $ <800 ${}\geq{}$1 $1800$ ${{\mathit p}}{{\overline{\mathit p}}}$
PRICE
1990
PLAS
$ \text{<1.E-37} $ <29 $1$ 50$-$61 ${{\mathit e}^{+}}{{\mathit e}^{-}}$
KINOSHITA
1989
PLAS
$ \text{<1.E-37} $ <18 $2$ 50$-$61 ${{\mathit e}^{+}}{{\mathit e}^{-}}$
KINOSHITA
1989
PLAS
$ \text{<1.E-38} $ <17 <1 $35$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$
BRAUNSCHWEIG
1988B
CNTR
$ \text{<8.E-37} $ <24 $1$ 50$-$52 ${{\mathit e}^{+}}{{\mathit e}^{-}}$
KINOSHITA
1988
PLAS
$ \text{<1.3E-35} $ <22 $2$ 50$-$52 ${{\mathit e}^{+}}{{\mathit e}^{-}}$
KINOSHITA
1988
PLAS
$ \text{<9.E-37} $ <4 <0.15 $10.6$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$
GENTILE
1987
CLEO
$ \text{<3.E-32} $ <800 ${}\geq{}$1 $1800$ ${{\mathit p}}{{\overline{\mathit p}}}$
PRICE
1987
PLAS
$ \text{<3.E-38} $ <3 $29$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$
FRYBERGER
1984
PLAS
$ \text{<1.E-31} $ 1,3 $540$ ${{\mathit p}}{{\overline{\mathit p}}}$
AUBERT
1983B
PLAS
$ \text{<4.E-38} $ <10 <6 $34$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$
MUSSET
1983
PLAS
$ \text{<8.E-36} $ <20 $52$ ${{\mathit p}}{{\mathit p}}$ 23
DELL
1982
CNTR
$ \text{<9.E-37} $ <30 <3 $29$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$
KINOSHITA
1982
PLAS
$ \text{<1.E-37} $ <20 <24 $63$ ${{\mathit p}}{{\mathit p}}$
CARRIGAN
1978
CNTR
$ \text{<1.E-37} $ <30 <3 $56$ ${{\mathit p}}{{\mathit p}}$
HOFFMANN
1978
PLAS
$ $ $62$ ${{\mathit p}}{{\mathit p}}$ 23
DELL
1976
SPRK
$ \text{<4.E-33} $ $300$ ${{\mathit p}}$ 23
STEVENS
1976B
SPRK
$ \text{<1.E-40} $ <5 <2 $70$ ${{\mathit p}}$ 24
ZRELOV
1976
CNTR
$ \text{<2.E-30} $ $300$ ${{\mathit n}}$ 23
BURKE
1975
OSPK
$ \text{<1.E-38} $ $8$ ${{\mathit \nu}}$ 25
CARRIGAN
1975
HLBC
$ \text{<5.E-43} $ <12 <10 $400$ ${{\mathit p}}$
EBERHARD
1975B
INDU
$ \text{<2.E-36} $ <30 <3 $60$ ${{\mathit p}}{{\mathit p}}$
GIACOMELLI
1975
PLAS
$ \text{<5.E-42} $ <13 <24 $400$ ${{\mathit p}}$
CARRIGAN
1974
CNTR
$ \text{<6.E-42} $ <12 <24 $300$ ${{\mathit p}}$
CARRIGAN
1973
CNTR
$ \text{<2.E-36} $ $1$ $0.001$ ${{\mathit \gamma}}$ 24
BARTLETT
1972
CNTR
$ \text{<1.E-41} $ <5 $70$ ${{\mathit p}}$
GUREVICH
1972
EMUL
$ \text{<1.E-40} $ <3 <2 $28$ ${{\mathit p}}$
AMALDI
1963
EMUL
$ \text{<2.E-40} $ <3 <2 $30$ ${{\mathit p}}$
PURCELL
1963
CNTR
$ \text{<1.E-35} $ <3 <4 $28$ ${{\mathit p}}$
FIDECARO
1961
CNTR
$ \text{<2.E-35} $ <1 $1$ $6$ ${{\mathit p}}$
BRADNER
1959
EMUL
1  AAD 2023CO limits given for monopoles pair produced via a Drell-Yan or photon-fusion mechanism. Spins 1/2 and 0 are considered. The quoted limit is representative of the lowest values that were achieved.
2  ACHARYA 2022A give limits for monopoles pair-produced via a Drell-Yan production. Spins 0, 1/2, and 1 are considered. The cross section limit is representative of the lowest values that were achieved. The experiment used a combination of nuclear track detectors to look evidence of passing monopoles and a SQUID magnetometer to look for stopped monopoles.
3  ACHARYA 2022B achieved limits on monopole (point-like included) production via the Schwinger mechanism in ${}^{}\mathrm {Pb}-{}^{}\mathrm {Pb}$ collisions at 5.02 TeV centre-of-mass energy per nucleon pair. The upper cross section limit value quoted here is representative of the lowest values achieved.
4  ACHARYA 2021 search for dyons at LHC. Using a production model limits (we report the lowest) are set for dyons with magnetic charge up to 5 gD, electric charges up to 200 e and spins 0, 1/2, 1. The corresponding mass limits for magnetic monopoles are in the range $870 - 2040$ GeV for magnetic charges in the same range.
5  AAD 2020G give limits for Drell-Yan production with spin-0 and spin-1/2 monopoles. The above limit is for spin = 0 at mass = 3 TeV.
6  ACHARYA 2019B limits both ${{\mathit \beta}}$-dependent and ${{\mathit \beta}}$-independent on monopoles with spins 0, 1/2, and 1 and with magnetic charges ranging from one to five times the Dirac charge in mass ranges between 200 GeV and 5000 GeV.
7  ACHARYA 2018A provide limits on monopoles with spins 0, 1/2, and 1 and with magnetic charges ranging from two to five times the Dirac charge.
8  The search was sensitive to monopoles which had stopped in aluminium trapping volumes. Monopoles with spins 0 and 1/2 were considered; mass-dependent spin 1/2 monopole limits are quoted here.
9  AAD 2016AB model-independent 95$\%$ CL limits estimated using a fiducial region of approximately constant acceptance. Limits are mass-dependent.
10  ACHARYA 2016 limits at 95$\%$ CL estimated using a Drell-Yan-like production mechanism for scalar monopoles.
11  AAD 2012CS searched for monopoles as highly ionising objects. The cross section limits are based on an assumed Drell Yan-like production process for spin 1/2 monopoles. The limits are mass- and scenario-dependent.
12  ABBIENDI 2008 assume production of spin 1/2 monopoles with effective charge $\mathit g\beta $ (n=1), via ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \gamma}^{*}}$ $\rightarrow$ ${{\mathit M}}{{\overline{\mathit M}}}$, so that the cross section is proportional to (1 + cos $^2\theta $). There is no $\mathit z$ information for such highly saturated tracks, so a parabolic track in the jet chamber is projected onto the $\mathit xy$ plane. Charge per hit in the chamber produces a clean separation of signal and background.
13  ABULENCIA 2006K searches for high-ionizing signals in CDF central outer tracker and time-of-flight detector. For Drell-Yan ${{\mathit M}}{{\overline{\mathit M}}}$ production, the cross section limit implies ${{\mathit M}}$ $>$ 360 GeV at 95$\%$ CL.
14  AKTAS 2005A model-dependent limits as a function of monopole mass shown for arbitrary mass of 60 GeV. Based on search for stopped monopoles in the H1 Al beam pipe.
15  AKTAS 2005A limits with assumed elastic spin 0 monopole pair production.
16  AKTAS 2005A limits with assumed inelastic spin 1/2 monopole pair production.
17  KALBFLEISCH 2004 reports searches for stopped magnetic monopoles in ${}^{}\mathrm {Be}$, ${}^{}\mathrm {Al}$, and ${}^{}\mathrm {Pb}$ samples obtained from discarded material from the upgrading of ${D0}$ and CDF. A large-aperture warm-bore cryogenic detector was used. The approach was an extension of the methods of KALBFLEISCH 2000. Cross section results moderately model dependent; interpretation as a mass lower limit depends on possibly invalid perturbation expansion.
18  KALBFLEISCH 2000 used an induction method to search for stopped monopoles in pieces of the ${D0}$ (FNAL) beryllium beam pipe and in extensions to the drift chamber aluminum support cylinder. Results are model dependent.
19  KALBFLEISCH 2000 result is for aluminum.
20  KALBFLEISCH 2000 result is for beryllium.
21  HE 1997 used a lead target and barium phosphate glass detectors. Cross-section limits are well below those predicted via the Drell-Yan mechanism.
22  This work has also been reinterpreted in the framework of monopole production via the thermal Schwinger process (GOULD 2017); this gives rise to lower mass limits.
23  Multiphoton events.
24  Cherenkov radiation polarization.
25  Re-examines CERN neutrino experiments.
References