Search for ${{\mathit A}^{0}}$ (Axion) Resonance in Bhabha Scattering

INSPIRE   PDGID:
S029AEE
The limit is for $\Gamma\mathrm {({{\mathit A}^{0}})}$[B( ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}})]{}^{2}$.
VALUE ($ 10^{-3} $ eV) CL% DOCUMENT ID TECN  COMMENT
• • We do not use the following data for averages, fits, limits, etc. • •
$<1.3$ 97 1
HALLIN
1992
CNTR ${\mathit m}_{{{\mathit A}^{0}}}$ = $1.75 - 1.88$ MeV
$\text{none 0.0016 - 0.47}$ 90 2
HENDERSON
1992C
CNTR ${\mathit m}_{{{\mathit A}^{0}}}$= $1.5 - 1.86$ MeV
$<2.0$ 90 3
WU
1992
CNTR ${\mathit m}_{{{\mathit A}^{0}}}$= $1.56 - 1.86$ MeV
$<0.013$ 95
TSERTOS
1991
CNTR ${\mathit m}_{{{\mathit A}^{0}}}$ = $1.832$ MeV
$\text{none 0.19 - 3.3}$ 95 4
WIDMANN
1991
CNTR ${\mathit m}_{{{\mathit A}^{0}}}$= $1.78 - 1.92$ MeV
$<5$ 97
BAUER
1990
CNTR ${\mathit m}_{{{\mathit A}^{0}}}$ = $1.832$ MeV
$\text{none 0.09 - 1.5}$ 95 5
JUDGE
1990
CNTR ${\mathit m}_{{{\mathit A}^{0}}}$ = $1.832$ MeV, elastic
$<1.9$ 97 6
TSERTOS
1989
CNTR ${\mathit m}_{{{\mathit A}^{0}}}$ = $1.82$ MeV
$\text{<(10 - 40)}$ 97 6
TSERTOS
1989
CNTR ${\mathit m}_{{{\mathit A}^{0}}}$ = $1.51-1.65$ MeV
$\text{<(1 - 2.5)}$ 97 6
TSERTOS
1989
CNTR ${\mathit m}_{{{\mathit A}^{0}}}$ = $1.80-1.86$ MeV
$<31$ 95
LORENZ
1988
CNTR ${\mathit m}_{{{\mathit A}^{0}}}$ = $1.646$ MeV
$<94$ 95
LORENZ
1988
CNTR ${\mathit m}_{{{\mathit A}^{0}}}$ = $1.726$ MeV
$<23$ 95
LORENZ
1988
CNTR ${\mathit m}_{{{\mathit A}^{0}}}$ = $1.782$ MeV
$<19$ 95
LORENZ
1988
CNTR ${\mathit m}_{{{\mathit A}^{0}}}$ = $1.837$ MeV
$<3.8$ 97 7
TSERTOS
1988
CNTR ${\mathit m}_{{{\mathit A}^{0}}}$ = $1.832$ MeV
8
VANKLINKEN
1988
CNTR
9
MAIER
1987
CNTR
$<2500$ 90
MILLS
1987
CNTR ${\mathit m}_{{{\mathit A}^{0}}}$ = $1.8$ MeV
10
VONWIMMERSPER..
1987
CNTR
1  HALLIN 1992 quote limits on lifetime, $8 \times 10^{-14}~--~5 \times 10^{-13}$ sec depending on mass, assuming B( ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$) = 100$\%$. They say that TSERTOS 1991 overstated their sensitivity by a factor of 3.
2  HENDERSON 1992C exclude axion with lifetime ${\mathit \tau}_{{{\mathit A}^{0}}}=1.4 \times 10^{-12}~--~4.0 \times 10^{-10}~$s, assuming B( ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}})=100\%$. HENDERSON 1992C also exclude a vector boson with =$1.4 \times 10^{-12}~--~6.0 \times 10^{-10}~$s.
3  WU 1992 quote limits on lifetime $>3.3 \times 10^{-13}~$s assuming B( ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}})=100\%$. They say that TSERTOS 1989 overestimate the limit by a factor of ${{\mathit \pi}}$/2. WU 1992 also quote a bound for vector boson, $>8.2 \times 10^{-13}~$s.
4  WIDMANN 1991 bound applies exclusively to the case B( ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$)=1, since the detection efficiency varies substantially as $\Gamma\mathrm {({{\mathit A}^{0}})}_{{\mathrm {total}}}$ changes. See their Fig.$~$6.
5  JUDGE 1990 excludes an elastic pseudoscalar ${{\mathit e}^{+}}{{\mathit e}^{-}}$ resonance for $4.5 \times 10^{-13}~$s $<$ $\tau\mathrm {({{\mathit A}^{0}})}$ $<$ $7.5 \times 10^{-12}~$s (95$\%$ CL) at ${\mathit m}_{{{\mathit A}^{0}}}$ = $1.832$ MeV. Comparable limits can be set for ${\mathit m}_{{{\mathit A}^{0}}}$ = $1.776-1.856$ MeV.
6  See also TSERTOS 1988B in references.
7  The upper limit listed in TSERTOS 1988 is too large by a factor of 4. See TSERTOS 1988B, footnote 3.
8  VANKLINKEN 1988 looked for relatively long-lived resonance ($\tau $ = $10^{-10}-10^{-12}~$s). The sensitivity is not sufficient to exclude such a narrow resonance.
9  MAIER 1987 obtained limits $\mathit R\Gamma $ ${ {}\lesssim{} }$ 60 eV (100 eV) at ${\mathit m}_{{{\mathit A}^{0}}}$ $\simeq{}$ $1.64$ MeV ($1.83$ MeV) for energy resolution $\Delta \mathit E_{{\mathrm {cm}}}$ $\simeq{}$ 3 keV, where $\mathit R$ is the resonance cross section normalized to that of Bhabha scattering, and $\Gamma $ = $\Gamma {}^{2}_{{{\mathit e}} {{\mathit e}}}/\Gamma _{{\mathrm {total}}}$. For a discussion implying that $\Delta \mathit E_{{\mathrm {cm}}}$ $\simeq{}$ 10$~$keV, see TSERTOS 1989.
10  VONWIMMERSPERG 1987 measured Bhabha scattering for $\mathit E_{{\mathrm {cm}}}$ = $1.37-1.86$ MeV and found a possible peak at $1.73$ with $\int{\sigma \mathit d\mathit E_{{\mathrm {cm}}}}$ = $14.5$ $\pm6.8$ keV$\cdot{}$b. For a comment and a reply, see VANKLINKEN 1988B and VONWIMMERSPERG 1988. Also see CONNELL 1988.
References