${{\mathit A}^{0}}$ (Axion) and Other Light Boson (${{\mathit X}^{0}}$) Searches in Nuclear Transitions

INSPIRE   PDGID:
S029ANT
Limits are for branching ratio.
VALUE CL% DOCUMENT ID TECN  COMMENT
• • We do not use the following data for averages, fits, limits, etc. • •
$<8.89 \times 10^{-6}$ 90 1
DERBIN
2023
CNTR M1 transition of ${}^{169}\mathrm {Tm}$
$<8.5 \times 10^{-6}$ 90 2
DERBIN
2002
CNTR ${}^{125m}{}^{}\mathrm {Te}$ decay
3
DEBOER
1997C
RVUE M1 transitions
$<5.5 \times 10^{-10}$ 95 4
TSUNODA
1995
CNTR ${}^{252}\mathrm {Cf}$ fission, ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit e}}{{\mathit e}}$
$<1.2 \times 10^{-6}$ 95 5
MINOWA
1993
CNTR ${}^{139}\mathrm {La}^{*}$ $\rightarrow$ ${}^{139}\mathrm {La}$ ${{\mathit A}^{0}}$
$<2 \times 10^{-4}$ 90 6
HICKS
1992
CNTR ${}^{35}\mathrm {S}$ decay, ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$
$<1.5 \times 10^{-9}$ 95 7
ASANUMA
1990
CNTR ${}^{241}\mathrm {Am}$ decay
$<(0.4 - 10){\times }\text{ 10}$$^{-3}$ 95 8
DEBOER
1990
CNTR ${}^{8}\mathrm {Be}^{*}$ $\rightarrow$ ${}^{8}\mathrm {Be}$ ${{\mathit A}^{0}}$, ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$
$<(0.2 - 1){\times }\text{ 10}$$^{-3}$ 90 9
BINI
1989
CNTR ${}^{16}\mathrm {O}^{*}$ $\rightarrow$ ${}^{16}\mathrm {O}$ ${{\mathit X}^{0}}$, ${{\mathit X}^{0}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$
10
AVIGNONE
1988
CNTR ${}^{}\mathrm {Cu}^{*}$ $\rightarrow$ ${}^{}\mathrm {Cu}$ ${{\mathit A}^{0}}$ ( ${{\mathit A}^{0}}$ $\rightarrow$ 2 ${{\mathit \gamma}}$, ${{\mathit A}^{0}}$ ${{\mathit e}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit e}}$, ${{\mathit A}^{0}}$ ${{\mathit Z}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit Z}}$)
$<1.5 \times 10^{-4}$ 90 11
DATAR
1988
CNTR ${}^{12}\mathrm {C}^{*}$ $\rightarrow$ ${}^{12}\mathrm {C}$ ${{\mathit A}^{0}}$, ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$
$<5 \times 10^{-3}$ 90 12
DEBOER
1988C
CNTR ${}^{16}\mathrm {O}^{*}$ $\rightarrow$ ${}^{16}\mathrm {O}$ ${{\mathit X}^{0}}$, ${{\mathit X}^{0}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$
$<3.4 \times 10^{-5}$ 95 13
DOEHNER
1988
SPEC ${}^{2}\mathrm {H}^{*}$, ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$
$<4 \times 10^{-4}$ 95 14
SAVAGE
1988
CNTR Nuclear decay (isovector)
$<3 \times 10^{-3}$ 95 14
SAVAGE
1988
CNTR Nuclear decay (isoscalar)
$<0.106$ 90 15
HALLIN
1986
SPEC ${}^{6}\mathrm {Li}$ isovector decay
$<10.8$ 90 15
HALLIN
1986
SPEC ${}^{10}\mathrm {B}$ isoscalar decays
$<2.2$ 90 15
HALLIN
1986
SPEC ${}^{14}\mathrm {N}$ isoscalar decays
$<4 \times 10^{-4}$ 90 16
SAVAGE
1986B
CNTR ${}^{14}\mathrm {N}^{*}$
17
ANANEV
1985
CNTR ${}^{}\mathrm {Li}^{*}$, deut${}^{*}$ ${{\mathit A}^{0}}$ $\rightarrow$ 2 ${{\mathit \gamma}}$
18
CAVAIGNAC
1983
CNTR ${}^{97}\mathrm {Nb}^{*}$, deut${}^{*}$ transition ${{\mathit A}^{0}}$ $\rightarrow$ 2 ${{\mathit \gamma}}$
19
ALEKSEEV
1982B
CNTR ${}^{}\mathrm {Li}^{*}$, deut${}^{*}$ transition ${{\mathit A}^{0}}$ $\rightarrow$ 2 ${{\mathit \gamma}}$
20
LEHMANN
1982
CNTR ${}^{}\mathrm {Cu}^{*}$ $\rightarrow$ ${}^{}\mathrm {Cu}$ ${{\mathit A}^{0}}$ ( ${{\mathit A}^{0}}$ $\rightarrow$ 2 ${{\mathit \gamma}}$)
21
ZEHNDER
1982
CNTR ${}^{}\mathrm {Li}^{*}$, ${}^{}\mathrm {Nb}^{*}$ decay, ${{\mathit n}}$-capt.
22
ZEHNDER
1981
CNTR ${}^{}\mathrm {Ba}^{*}$ $\rightarrow$ ${}^{}\mathrm {Ba}$ ${{\mathit A}^{0}}$ ( ${{\mathit A}^{0}}$ $\rightarrow$ 2 ${{\mathit \gamma}}$)
23
CALAPRICE
1979
Carbon
1  DERBIN 2023 use a thallium garnet bolometric detector to search for the 8.4 keV solar axion line emitted from the M1 nuclear transition of ${}^{169}\mathrm {Tm}$. Their limits are equivalent to an upper bound on the KSVZ and DFSZ axion masses of 141 eV and 244 eV, respectively.
2  DERBIN 2002 looked for the axion emission in an M1 transition in ${}^{125m}{}^{}\mathrm {Te}$ decay. They looked for a possible presence of a shifted energy spectrum in gamma rays due to the undetected axion.
3  DEBOER 1997C reanalyzed the existent data on Nuclear M1 transitions and find that a 9$~$MeV boson decaying into ${{\mathit e}^{+}}{{\mathit e}^{-}}$ would explain the excess of events with large opening angles. See also DEBOER 2001 for follow-up experiments.
4  TSUNODA 1995 looked for axion emission when ${}^{252}\mathrm {Cf}$ undergoes a spontaneous fission, with the axion decaying into ${{\mathit e}^{+}}{{\mathit e}^{-}}$. The bound is for ${\mathit m}_{{{\mathit A}^{0}}}$=40 MeV. It improves to $2.5 \times 10^{-5}$ for ${\mathit m}_{{{\mathit A}^{0}}}$=200 MeV.
5  MINOWA 1993 studied chain process, ${}^{139}\mathrm {Ce}$ $\rightarrow$ ${}^{139}\mathrm {La}^{*}$ by electron capture and M1 transition of ${}^{139}\mathrm {La}^{*}$ to the ground state. It does not assume decay modes of ${{\mathit A}^{0}}$. The bound applies for ${\mathit m}_{{{\mathit A}^{0}}}<166$ keV.
6  HICKS 1992 bound is applicable for ${\mathit \tau}_{{{\mathit X}^{0}}}$ $<4 \times 10^{-11}$ sec.
7  The ASANUMA 1990 limit is for the branching fraction of ${{\mathit X}^{0}}$ emission per ${}^{241}\mathrm {Am}$ ${{\mathit \alpha}}$ decay and valid for ${\mathit \tau}_{{{\mathit X}^{0}}}$ $<$ $3 \times 10^{-11}~$s.
8  The DEBOER 1990 limit is for the branching ratio ${}^{8}\mathrm {Be}^{*}$ ($18.15$ MeV, 1${}^{+}$) $\rightarrow$ ${}^{8}\mathrm {Be}$ ${{\mathit A}^{0}}$, ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ for the mass range ${\mathit m}_{{{\mathit A}^{0}}}$ = 4$-$15 MeV.
9  The BINI 1989 limit is for the branching fraction of ${}^{16}\mathrm {O}^{*}$ ($6.05$ MeV, 0${}^{+}$) $\rightarrow$ ${}^{16}\mathrm {O}$ ${{\mathit X}^{0}}$, ${{\mathit X}^{0}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ for ${\mathit m}_{{{\mathit X}}}$ = $1.5-3.1$ MeV. ${\mathit \tau}_{{{\mathit X}^{0}}}{ {}\lesssim{} }$ $10^{-11}~$s is assumed. The spin-parity of ${{\mathit X}}$ is restricted to 0${}^{+}$ or 1${}^{−}$.
10  AVIGNONE 1988 looked for the 1115 keV transition ${}^{}\mathrm {C}^{*}$ $\rightarrow$ ${}^{}\mathrm {Cu}$ ${{\mathit A}^{0}}$, either from ${{\mathit A}^{0}}$ $\rightarrow$ 2 ${{\mathit \gamma}}$ in-flight decay or from the secondary ${{\mathit A}^{0}}$ interactions by Compton and by Primakoff processes. Limits for axion parameters are obtained for ${\mathit m}_{{{\mathit A}^{0}}}$ $<$ $1.1$ MeV.
11  DATAR 1988 rule out light pseudoscalar particle emission through its decay ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ in the mass range $1.02-2.5$ MeV and lifetime range $10^{-13}-10^{-8}~$s. The above limit is for $\tau $ = $5 \times 10^{-13}~$s and $\mathit m$ = $1.7$ MeV; see the paper for the $\tau -\mathit m$ dependence of the limit.
12  The limit is for the branching fraction of ${}^{16}\mathrm {O}^{*}$ ($6.05$ MeV, 0${}^{+}$) $\rightarrow$ ${}^{16}\mathrm {O}$ ${{\mathit X}^{0}}$, ${{\mathit X}^{0}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ against internal pair conversion for ${\mathit m}_{{{\mathit X}^{0}}}$ = $1.7$ MeV and ${\mathit \tau}_{{{\mathit X}^{0}}}$ $<$ $10^{-11}~$s. Similar limits are obtained for ${\mathit m}_{{{\mathit X}^{0}}}$ = $1.3-3.2$ MeV. The spin parity of ${{\mathit X}^{0}}$ must be either 0${}^{+}$ or 1${}^{−}$. The limit at $1.7$ MeV is translated into a limit for the ${{\mathit X}^{0}}$-nucleon coupling constant: $\mathit g{}^{2}_{{{\mathit X}^{0}} }/4{{\mathit \pi}}$ $<$ $2.3 \times 10^{-9}$.
13  The DOEHNER 1988 limit is for ${\mathit m}_{{{\mathit A}^{0}}}$ = $1.7$ MeV, $\tau\mathrm {({{\mathit A}^{0}})}$ $<$ $10^{-10}~$s. Limits less than $10^{-4}$ are obtained for ${\mathit m}_{{{\mathit A}^{0}}}$ = $1.2-2.2$ MeV.
14  SAVAGE 1988 looked for ${{\mathit A}^{0}}$ that decays into ${{\mathit e}^{+}}{{\mathit e}^{-}}$ in the decay of the $9.17$ MeV $\mathit J{}^{P}$ = $2{}^{+}{}^{}$ state in ${}^{14}\mathrm {N}$, $17.64$ MeV state $\mathit J{}^{P}$ = $1{}^{+}{}^{}$ in ${}^{8}\mathrm {Be}$, and the $18.15$ MeV state $\mathit J{}^{P}$ = $1{}^{+}{}^{}$ in ${}^{8}\mathrm {Be}$. This experiment constrains the isovector coupling of ${{\mathit A}^{0}}$ to hadrons, if ${\mathit m}_{{{\mathit A}^{0}}}$ = ($1.1$ $\rightarrow$ $2.2$) MeV and the isoscalar coupling of ${{\mathit A}^{0}}$ to hadrons, if ${\mathit m}_{{{\mathit A}^{0}}}$ = ($1.1$ $\rightarrow$ $2.6$) MeV. Both limits are valid only if $\tau\mathrm {({{\mathit A}^{0}})}{ {}\lesssim{} }$ $1 \times 10^{-11}$ s.
15  Limits are for $\Gamma\mathrm {({{\mathit A}^{0}}(1.8 MeV))}/\Gamma\mathrm {({{\mathit \pi}}M1)}$; i.e., for 1.8 MeV axion emission normalized to the rate for internal emission of ${{\mathit e}^{+}}{{\mathit e}^{-}}$ pairs. Valid for ${\mathit \tau}_{{{\mathit A}^{0}}}$ $<$ $2 \times 10^{-11}$s. ${}^{6}\mathrm {Li}$ isovector decay data strongly disfavor PECCEI 1986 model I, whereas the ${}^{10}\mathrm {B}$ and ${}^{14}\mathrm {N}$ isoscalar decay data strongly reject PECCEI 1986 model II and III.
16  SAVAGE 1986B looked for ${{\mathit A}^{0}}$ that decays into ${{\mathit e}^{+}}{{\mathit e}^{-}}$ in the decay of the 9.17 MeV $\mathit J{}^{P} = 2+$ state in ${}^{14}\mathrm {N}$. Limit on the branching fraction is valid if ${\mathit \tau}_{{{\mathit A}^{0}}}{ {}\lesssim{} }1. \times 10^{-11}$s for ${\mathit m}_{{{\mathit A}^{0}}}$ = (1.1$-$1.7) MeV. This experiment constrains the iso-vector coupling of ${{\mathit A}^{0}}$ to hadrons.
17  ANANEV 1985 with IBR-2 pulsed reactor exclude standard ${{\mathit A}^{0}}$ at CL = 95$\%$ masses below 470 keV (${}^{}\mathrm {Li}^{*}$ decay) and below 2${}{\mathit m}_{{{\mathit e}}}$ for deuteron* decay.
18  CAVAIGNAC 1983 at Bugey reactor exclude axion at any ${\mathit m}_{\mathrm {{}^{97}\mathrm {Nb}^{*}decay}}$ and axion with ${\mathit m}_{{{\mathit A}^{0}}}$ between 275 and 288 keV (deuteron* decay).
19  ALEKSEEV 1982 with IBR-2 pulsed reactor exclude standard ${{\mathit A}^{0}}$ at CL = 95$\%$ mass-ranges ${\mathit m}_{{{\mathit A}^{0}}}$ $<$400 keV (${}^{}\mathrm {Li}^{*}$ decay) and 330 keV $<{\mathit m}_{{{\mathit A}^{0}}}$ $<$2.2 MeV. (deuteron* decay).
20  LEHMANN 1982 obtained ${{\mathit A}^{0}}$ $\rightarrow$ 2 ${{\mathit \gamma}}$ rate $<6.2 \times 10^{-5}$/s (CL = 95$\%$) excluding ${\mathit m}_{{{\mathit A}^{0}}}$ between 100 and 1000 keV.
21  ZEHNDER 1982 used Gosgen 2.8GW light-water reactor to check ${{\mathit A}^{0}}$ production. No 2${{\mathit \gamma}}$ peak in ${}^{}\mathrm {Li}^{*}$, ${}^{}\mathrm {Nb}^{*}$ decay (both single ${{\mathit p}}$ transition) nor in ${{\mathit n}}$ capture (combined with previous ${}^{}\mathrm {Ba}^{*}$ negative result) rules out standard ${{\mathit A}^{0}}$. Set limit ${\mathit m}_{{{\mathit A}^{0}}}$ $<$60 keV for any ${{\mathit A}^{0}}$.
22  ZEHNDER 1981 looked for ${}^{}\mathrm {Ba}^{*}$ $\rightarrow$ ${{\mathit A}^{0}}{}^{}\mathrm {Ba}$ transition with ${{\mathit A}^{0}}$ $\rightarrow$ 2 ${{\mathit \gamma}}$. Obtained 2${{\mathit \gamma}}$ coincidence rate $<2.2 \times 10^{-5}$/s (CL = 95$\%$) excluding ${\mathit m}_{{{\mathit A}^{0}}}$ $>$160 keV (or 200 keV depending on Higgs mixing). However, see BARROSO 1981.
23  CALAPRICE 1979 saw no axion emission from excited states of carbon. Sensitive to axion mass between 1 and 15 MeV.
References