• • • We do not use the following data for averages, fits, limits, etc. • • • |
$<9 \times 10^{-6}$ |
90 |
1 |
|
TWST |
|
|
2 |
|
COSM |
|
|
3 |
|
RVUE |
|
|
4 |
|
THEO |
|
|
5 |
|
|
$<0.033$ |
95 |
6 |
|
ARG |
$<0.018$ |
95 |
6 |
|
ARG |
$<6.4 \times 10^{-9}$ |
90 |
7 |
|
B787 |
$<1.4 \times 10^{-5}$ |
90 |
8 |
|
CNTR |
$<1.1 \times 10^{-9}$ |
90 |
9 |
|
CBOX |
|
|
10 |
|
ASTR |
|
|
11 |
|
ASTR |
$<5 \times 10^{-6}$ |
90 |
12 |
|
CNTR |
$<1.3 \times 10^{-9}$ |
90 |
13 |
|
CNTR |
$<3 \times 10^{-4}$ |
90 |
14 |
|
RVUE |
$<1 \times 10^{-10}$ |
90 |
15 |
|
SPEC |
$<2.6 \times 10^{-6}$ |
90 |
16 |
|
SPEC |
|
|
17 |
|
MRK3 |
|
|
18 |
|
COSM |
1
BAYES 2015 limits are the average over ${\mathit m}_{{{\mathit X}^{0}}}$ = $13 - 80$ MeV for the isotropic decay distribution of positrons. See their Fig. 4 and Table II for the mass-dependent limits as well as the dependence on the decay anisotropy. In particular, they find a limit $<$ $58 \times 10^{-6}$ at 90$\%$ CL for massless familons and for the same asymmetry as normal muon decay, a case not covered by JODIDIO 1986 .
|
2
LATTANZI 2013 use WMAP 9 year data as well as X-ray and ${{\mathit \gamma}}$-ray observations to derive limits on decaying majoron dark matter. A limit on the decay width $\Gamma\mathrm {( {{\mathit X}^{0}} \rightarrow {{\mathit \nu}} {{\overline{\mathit \nu}}} )}$ $<$ $6.4 \times 10^{-19}$ s${}^{-1}$ at 95$\%$ CL is found if majorons make up all of the dark matter.
|
3
LESSA 2007 consider decays of the form Meson $\rightarrow$ ${{\mathit \ell}}{{\mathit \nu}}$ Majoron and ${{\mathit \ell}}$ $\rightarrow$ ${{\mathit \ell}^{\,'}}{{\mathit \nu}}{{\overline{\mathit \nu}}}$ Majoron and use existing data to derive limits on the neutrino-Majoron Yukawa couplings $\mathit g_{ {{\mathit \alpha}} {{\mathit \beta}} }$ (${{\mathit \alpha}}$, ${{\mathit \beta}}$ ${{\mathit \mu}}$ ,${{\mathit \tau}}$). Their best limits are $\vert \mathit g_{ {{\mathit e}} {{\mathit \alpha}} }$ $\vert ^2<$ $5.5 \times 10^{-6}$, $\vert \mathit g_{ {{\mathit \mu}} {{\mathit \alpha}} }$ $\vert ^2<$ $4.5 \times 10^{-5}$, $\vert \mathit g_{ {{\mathit \tau}} {{\mathit \alpha}} }$ $\vert ^2<$ $0.055$ at CL = 90$\%$.
|
4
DIAZ 1998 studied models of spontaneously broken lepton number with both singlet and triplet Higgses. They obtain limits on the parameter space from invisible decay ${{\mathit Z}}$ $\rightarrow$ ${{\mathit H}^{0}}{{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit X}^{0}}{{\mathit X}^{0}}{{\mathit X}^{0}}{{\mathit X}^{0}}{{\mathit X}^{0}}$ and ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit H}^{0}}$ with ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit X}^{0}}{{\mathit X}^{0}}$ .
|
5
BOBRAKOV 1991 searched for anomalous magnetic interactions between polarized electrons expected from the exchange of a massless pseudoscalar boson (arion). A limit $\mathit x{}^{2}_{{{\mathit e}}}$ $<$ $2 \times 10^{-4}$ (95$\%$CL) is found for the effective anomalous magneton parametrized as $\mathit x_{{{\mathit e}}}(\mathit G_{\mathit F}/8{{\mathit \pi}}\sqrt {2 }){}^{1/2}$.
|
6
ALBRECHT 1990E limits are for B( ${{\mathit \tau}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit X}^{0}}$ )/B( ${{\mathit \tau}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \nu}}{{\overline{\mathit \nu}}}$ ). Valid for ${\mathit m}_{{{\mathit X}^{0}}}$ $<$ 100 MeV. The limits rise to $7.1\%$ (for ${{\mathit \mu}}$), $5.0\%$ (for ${{\mathit e}}$) for ${\mathit m}_{{{\mathit X}^{0}}}$ = 500 MeV.
|
7
ATIYA 1990 limit is for ${\mathit m}_{{{\mathit X}^{0}}}$ = 0. The limit B $<$ $1 \times 10^{-8}$ holds for ${\mathit m}_{{{\mathit X}^{0}}}$ $<$ 95 MeV. For the reduction of the limit due to finite lifetime of ${{\mathit X}^{0}}$, see their Fig.$~$3.
|
8
BALKE 1988 limits are for B( ${{\mathit \mu}^{+}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit X}^{0}}$ ). Valid for ${\mathit m}_{{{\mathit X}^{0}}}$ $<$ 80 MeV and ${\mathit \tau}_{{{\mathit X}^{0}}}$ $>$ $10^{-8}$ sec.
|
9
BOLTON 1988 limit corresponds to $\mathit F$ $>$ $3.1 \times 10^{9}$ GeV, which does not depend on the chirality property of the coupling.
|
10
CHANDA 1988 find ${{\mathit v}_{{T}}}$ $<$ 10 MeV for the weak-triplet Higgs vacuum expectation value in Gelmini-Roncadelli model, and ${{\mathit v}_{{S}}}$ $>$ $5.8 \times 10^{6}$ GeV in the singlet Majoron model.
|
11
CHOI 1988 used the observed neutrino flux from the supernova SN$~$1987A to exclude the neutrino Majoron Yukawa coupling $\mathit h$ in the range $2 \times 10^{-5}$ $<$ $\mathit h$ $<$ $3 \times 10^{-4}$ for the interaction $\mathit L_{{\mathrm {int}}}$ = ${1\over 2}\mathit ih{{\overline{\mathit \psi}}}{}^{\mathit c}_{\nu }\gamma _{5}{{\mathit \psi}_{{\nu}}}\phi _{{\mathrm {X}}}$. For several families of neutrinos, the limit applies for ($\Sigma \mathit h{}^{4}_{\mathit i}){}^{1/4}$.
|
12
PICCIOTTO 1988 limit applies when ${\mathit m}_{{{\mathit X}^{0}}}$ $<$ 55 MeV and ${\mathit \tau}_{{{\mathit X}^{0}}}$ $>$ 2ns, and it decreases to $4 \times 10^{-7}$ at ${\mathit m}_{{{\mathit X}^{0}}}$ = 125 MeV, beyond which no limit is obtained.
|
13
GOLDMAN 1987 limit corresponds to $\mathit F$ $>$ $2.9 \times 10^{9}$ GeV for the family symmetry breaking scale from the Lagrangian $\mathit L_{{\mathrm {int}}}$ = (1/$\mathit F){{\overline{\mathit \psi}}_{{\mu}}}{{\mathit \gamma}}{}^{{{\mathit \mu}}}$ ($\mathit a+\mathit b{{\mathit \gamma}_{{5}}}$) ${{\mathit \psi}_{{e}}}\partial{}_{{{\mathit \mu}}}{{\mathit \phi}}_{{{\mathit X}^{0}}}$ with $\mathit a{}^{2}+\mathit b{}^{2}$ = 1. This is not as sensitive as the limit $\mathit F$ $>9.9 \times 10^{9}$ GeV derived from the search for ${{\mathit \mu}^{+}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit X}^{0}}$ by JODIDIO 1986 , but does not depend on the chirality property of the coupling.
|
14
Limits are for $\Gamma\mathrm {( {{\mathit \mu}} \rightarrow {{\mathit e}} {{\mathit X}^{0}} )}/\Gamma\mathrm {( {{\mathit \mu}} \rightarrow {{\mathit e}} {{\mathit \nu}} {{\overline{\mathit \nu}}} )}$. Valid when ${\mathit m}_{{{\mathit X}^{0}}}$ = 0$-$93.4, 98.1$-$103.5 MeV.
|
15
EICHLER 1986 looked for ${{\mathit \mu}^{+}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit X}^{0}}$ followed by ${{\mathit X}^{0}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ . Limits on the branching fraction depend on the mass and and lifetime of ${{\mathit X}^{0}}$. The quoted limits are valid when ${\mathit \tau}_{{{\mathit X}^{0}}}{ {}\lesssim{} }3. \times 10^{-10}~$s if the decays are kinematically allowed.
|
16
JODIDIO 1986 corresponds to $\mathit F$ $>9.9 \times 10^{9}$ GeV for the family symmetry breaking scale with the parity-conserving effective Lagrangian $\mathit L_{{\mathrm {int}}}$ = (1/$\mathit F$) ${{\overline{\mathit \psi}}_{{\mu}}}{{\mathit \gamma}}{}^{{{\mathit \mu}}}{{\mathit \psi}_{{e}}}\partial{}{}^{{{\mathit \mu}}}\phi _{{{\mathit X}^{0}}}$.
|
17
BALTRUSAITIS 1985 search for light Goldstone boson(${{\mathit X}^{0}}$) of broken U(1). CL = 95$\%$ limits are B( ${{\mathit \tau}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit X}^{0}}$ )$/$B( ${{\mathit \tau}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \nu}}{{\mathit \nu}}$ ) $<$0.125 and B( ${{\mathit \tau}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit X}^{0}}$ )$/$B( ${{\mathit \tau}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit \nu}}{{\mathit \nu}}$ ) $<$0.04. Inferred limit for the symmetry breaking scale is $\mathit m$ $>$3000 TeV.
|
18
The primordial heavy neutrino must decay into ${{\mathit \nu}}$ and familon, $\mathit f_{\mathit A}$, early so that the red-shifted decay products are below critical density, see their table. In addition, ${{\mathit K}}$ $\rightarrow$ ${{\mathit \pi}}$ $\mathit f_{\mathit A}$ and ${{\mathit \mu}}$ $\rightarrow$ ${{\mathit e}}$ $\mathit f_{\mathit A}$ are unseen. Combining these excludes ${\mathit m}_{\mathrm {heavy {{\mathit \nu}}}}$ between $5 \times 10^{-5}$ and $5 \times 10^{-4}$ MeV (${{\mathit \mu}}$ decay) and ${\mathit m}_{\mathrm {heavy {{\mathit \nu}}}}$ between $5 \times 10^{-5}$ and 0.1 MeV (${{\mathit K}}$-decay).
|