$
\bf{>7200}
$
|
90
|
$\bf{{}^{128}\mathrm {Te}}$
|
|
CNTR
|
1 |
|
• • • We do not use the following data for averages, fits, limits, etc. • • • |
$
>4.4
$
|
90
|
${}^{100}\mathrm {Mo}$
|
0${{\mathit \nu}}1{{\mathit \chi}}$
|
NEMO-3
|
2 |
|
$
>37
$
|
90
|
${}^{82}\mathrm {Se}$
|
0${{\mathit \nu}}1{{\mathit \chi}}$
|
NEMO-3
|
3 |
|
$
>420
$
|
90
|
${}^{76}\mathrm {Ge}$
|
0${{\mathit \nu}}1{{\mathit \chi}}$
|
GERDA
|
4 |
|
$
>400
$
|
90
|
${}^{100}\mathrm {Mo}$
|
0${{\mathit \nu}}1{{\mathit \chi}}$
|
NEMO-3
|
5 |
|
$
>1200
$
|
90
|
${}^{136}\mathrm {Xe}$
|
0${{\mathit \nu}}1{{\mathit \chi}}$
|
EXO-200
|
6 |
|
$
>2600
$
|
90
|
${}^{136}\mathrm {Xe}$
|
0${{\mathit \nu}}1{{\mathit \chi}}$
|
KamLAND-Zen
|
7 |
|
$
>16
$
|
90
|
${}^{130}\mathrm {Te}$
|
0${{\mathit \nu}}1{{\mathit \chi}}$
|
NEMO-3
|
8 |
|
$
>1.9
$
|
90
|
${}^{96}\mathrm {Zr}$
|
2${{\mathit \nu}}1{{\mathit \chi}}$
|
NEMO-3
|
9 |
|
$
>1.52
$
|
90
|
${}^{150}\mathrm {Nd}$
|
0${{\mathit \nu}}1{{\mathit \chi}}$
|
NEMO-3
|
10 |
|
$
>27
$
|
90
|
${}^{100}\mathrm {Mo}$
|
0${{\mathit \nu}}1{{\mathit \chi}}$
|
NEMO-3
|
11 |
|
$
>15
$
|
90
|
${}^{82}\mathrm {Se}$
|
0${{\mathit \nu}}1{{\mathit \chi}}$
|
NEMO-3
|
12 |
|
$
>14
$
|
90
|
${}^{100}\mathrm {Mo}$
|
0${{\mathit \nu}}1{{\mathit \chi}}$
|
NEMO-3
|
13 |
|
$
>12
$
|
90
|
${}^{82}\mathrm {Se}$
|
0${{\mathit \nu}}1{{\mathit \chi}}$
|
NEMO-3
|
14 |
|
$
>2.2
$
|
90
|
${}^{130}\mathrm {Te}$
|
0${{\mathit \nu}}1{{\mathit \chi}}$
|
Cryog. det.
|
15 |
|
$
>0.9
$
|
90
|
${}^{130}\mathrm {Te}$
|
0${{\mathit \nu}}2{{\mathit \chi}}$
|
Cryog. det.
|
16 |
|
$
>8
$
|
90
|
${}^{116}\mathrm {Cd}$
|
0${{\mathit \nu}}1{{\mathit \chi}}$
|
CdWO$_{4}$ scint.
|
17 |
|
$
>0.8
$
|
90
|
${}^{116}\mathrm {Cd}$
|
0${{\mathit \nu}}2{{\mathit \chi}}$
|
CdWO$_{4}$ scint.
|
18 |
|
$
>500
$
|
90
|
${}^{136}\mathrm {Xe}$
|
0${{\mathit \nu}}1{{\mathit \chi}}$
|
Liquid Xe Scint.
|
19 |
|
$
>5.8
$
|
90
|
${}^{100}\mathrm {Mo}$
|
0${{\mathit \nu}}1{{\mathit \chi}}$
|
ELEGANT V
|
20 |
|
$
>0.32
$
|
90
|
${}^{100}\mathrm {Mo}$
|
0${{\mathit \nu}}1{{\mathit \chi}}$
|
Liq. Ar ioniz.
|
21 |
|
$
>0.0035
$
|
90
|
${}^{160}\mathrm {Gd}$
|
0${{\mathit \nu}}1{{\mathit \chi}}$
|
${}^{160}\mathrm {Gd}_{2}$SiO$_{5}$:Ce
|
22 |
|
$
>0.013
$
|
90
|
${}^{160}\mathrm {Gd}$
|
0${{\mathit \nu}}2{{\mathit \chi}}$
|
${}^{160}\mathrm {Gd}_{2}$SiO$_{5}$:Ce
|
23 |
|
$
>2.3
$
|
90
|
${}^{82}\mathrm {Se}$
|
0${{\mathit \nu}}1{{\mathit \chi}}$
|
NEMO 2
|
24 |
|
$
>0.31
$
|
90
|
${}^{96}\mathrm {Zr}$
|
0${{\mathit \nu}}1{{\mathit \chi}}$
|
NEMO 2
|
25 |
|
$
>0.63
$
|
90
|
${}^{82}\mathrm {Se}$
|
0${{\mathit \nu}}2{{\mathit \chi}}$
|
NEMO 2
|
26 |
|
$
>0.063
$
|
90
|
${}^{96}\mathrm {Zr}$
|
0${{\mathit \nu}}2{{\mathit \chi}}$
|
NEMO 2
|
26 |
|
$
>0.16
$
|
90
|
${}^{100}\mathrm {Mo}$
|
0${{\mathit \nu}}2{{\mathit \chi}}$
|
NEMO 2
|
26 |
|
$
>2.4
$
|
90
|
${}^{82}\mathrm {Se}$
|
0${{\mathit \nu}}1{{\mathit \chi}}$
|
NEMO 2
|
27 |
|
$
>7.2
$
|
90
|
${}^{136}\mathrm {Xe}$
|
0${{\mathit \nu}}2{{\mathit \chi}}$
|
TPC
|
28 |
|
$
>7.91
$
|
90
|
${}^{76}\mathrm {Ge}$
|
|
SPEC
|
29 |
|
$
>17
$
|
90
|
${}^{76}\mathrm {Ge}$
|
|
CNTR
|
|
|
1
BERNATOWICZ 1992 studied double-$\beta $ decays of ${}^{128}\mathrm {Te}$ and ${}^{130}\mathrm {Te}$, and found the ratio $\tau ({}^{130}\mathrm {Te})/\tau ({}^{128}\mathrm {Te}$) = ($3.52$ $\pm0.11$) $ \times 10^{-4}$ in agreement with relatively stable theoretical predictions. The bound is based on the requirement that Majoron-emitting decay cannot be larger than the observed double-beta rate of ${}^{128}\mathrm {Te}$ of ($77$ $\pm4$) $ \times 10^{23}$ year. We calculated 90$\%$ CL limit as ($7.7 - 1.28{\times }0.4=7.2){\times }10^{24}$.
|
2
ARNOLD 2019 uses the NEMO-3 tracking calorimeter to determine limits for the Majoron emitting double beta decay, with spectral index n = 3. The limit corresponds to the range of the ${{\mathit g}_{{ee}}}$ coupling of $0.013 - 0.035$; dependimg on the nuclear matrix elements used.
|
3
ARNOLD 2018 use the NEMO-3 tracking detector. The limit corresponds to $\langle {{\mathit g}_{{ee}}}\rangle $ $<$ $3.2 - 8.0 \times 10^{-5}$; the range corresponds to different nuclear matrix element calculations.
|
4
AGOSTINI 2015A analyze a 20.3 kg yr of data set of the GERDA calorimeter to determine $\mathit g_{ {{\mathit \nu}} {{\mathit \chi}} }<$ $3.4 - 8.7$ on the Majoron-neutrino coupling constant. The range reflects the spread of the nuclear matrix elements.
|
5
ARNOLD 2015 use the NEMO-3 tracking calorimeter with 3.43 kg yr exposure to determine the limit on Majoron emission. The limit corresponds to $\mathit g_{ {{\mathit \nu}} {{\mathit \chi}} }<$ $1.6 - 3.0$. The spread reflects different nuclear matrix elements. Supersedes ARNOLD 2006 .
|
6
ALBERT 2014A utilize 100 kg yr of exposure of the EXO-200 tracking calorimeter to place a limit on the $\mathit g_{ {{\mathit \nu}} {{\mathit \chi}} }<$ $0.8 - 1.7$ on the Majoron-neutrino coupling constant. The range reflects the spread of the nuclear matrix elements.
|
7
GANDO 2012 use the KamLAND-Zen detector to obtain the limit on the 0${{\mathit \nu}}{{\mathit \chi}}$ decay with Majoron emission. It implies that the coupling constant $\mathit g_{ {{\mathit \nu}} {{\mathit \chi}} }<$ $0.8 - 1.6$ depending on the nuclear matrix elements used.
|
8
ARNOLD 2011 use the NEMO-3 detector to obtain the reported limit on Majoron emission. It implies that the coupling constant ${{\mathit g}}_{ {{\mathit \nu}} {{\mathit \chi}} }$ $<$ $0.6 - 1.6$ depending on the nuclear matrix element used. Supercedes ARNABOLDI 2003 .
|
9
ARGYRIADES 2010 use the NEMO-3 tracking detector and ${}^{96}\mathrm {Zr}$ to derive the reported limit. No limit for the Majoron electron coupling is given.
|
10
ARGYRIADES 2009 use ${}^{150}\mathrm {Nd}$ data taken with the NEMO-3 tracking detector. The reported limit corresponds to $\langle $ $\mathit g_{ {{\mathit \nu}} {{\mathit \chi}} }\rangle <$ $1.7 - 3.0$ using a range of nuclear matrix elements that include the effect of nuclear deformation.
|
11
ARNOLD 2006 use ${}^{100}\mathrm {Mo}$ data taken with the NEMO-3 tracking detector. The reported limit corresponds to $\langle \mathit g_{ {{\mathit \nu}} {{\mathit \chi}} }\rangle $ $<$ ($0.4 - 1.8){\times }10^{-4}$ using a range of matrix element calculations. Superseded by ARNOLD 2015 .
|
12
NEMO-3 tracking calorimeter is used in ARNOLD 2006 . Reported half-life limit for ${}^{82}\mathrm {Se}$ corresponds to $\langle \mathit g_{ {{\mathit \nu}} {{\mathit \chi}} }\rangle $ $<$ ($0.66 - 1.9){\times }10^{-4}$ using a range of matrix element calculations. Supersedes ARNOLD 2004 .
|
13
ARNOLD 2004 use the NEMO-3 tracking detector. The limit corresponds to $\langle \mathit g_{ {{\mathit \nu}} {{\mathit \chi}} }\rangle $ $<$ ($0.5 - 0.9)10^{-4}$ using the matrix elements of SIMKOVIC 1999 , STOICA 2001 and CIVITARESE 2003 . Superseded by ARNOLD 2006 .
|
14
ARNOLD 2004 use the NEMO-3 tracking detector. The limit corresponds to $\langle \mathit g_{ {{\mathit \nu}} {{\mathit \chi}} }\rangle $ $<$ ($0.7 - 1.6)10^{-4}$ using the matrix elements of SIMKOVIC 1999 , STOICA 2001 and CIVITARESE 2003 .
|
15
Supersedes ALESSANDRELLO 2000 . Array of TeO$_{2}$ crystals in high resolution cryogenic calorimeter. Some enriched in ${}^{130}\mathrm {Te}$. Derive $\langle \mathit g_{ {{\mathit \nu}} {{\mathit \chi}} }\rangle $ $<$ $17 - 33 \times 10^{-5}$ depending on matrix element.
|
16
Supersedes ALESSANDRELLO 2000 . Cryogenic calorimeter search.
|
17
Limit for the 0 ${{\mathit \nu}}{{\mathit \chi}}$ decay with Majoron emission of ${}^{116}\mathrm {Cd}$ using enriched CdWO$_{4}$ scintillators. $\langle \mathit g_{ {{\mathit \nu}} {{\mathit \chi}} }\rangle <4.6 - 8.1 \times 10^{-5}$ depending on the matrix element. Supersedes DANEVICH 2000 .
|
18
Limit for the 0${{\mathit \nu}}2{{\mathit \chi}}$ decay of ${}^{116}\mathrm {Cd}$. Supersedes DANEVICH 2000 .
|
19
BERNABEI 2002D obtain limit for 0 ${{\mathit \nu}}{{\mathit \chi}}$ decay with Majoron emission of ${}^{136}\mathrm {Xe}$ using liquid Xe scintillation detector. They derive $\langle \mathit g_{ {{\mathit \nu}} {{\mathit \chi}} }\rangle <2.0 - 3.0 \times 10^{-5}$ with several nuclear matrix elements.
|
20
Replaces TANAKA 1993 . FUSHIMI 2002 derive half-life limit for the 0 ${{\mathit \nu}}{{\mathit \chi}}$ $~$decay by means of tracking calorimeter ELEGANT$~$V. Considering various matrix element calculations, a range of limits for the Majoron-neutrino coupling is given: $\langle \mathit g_{ {{\mathit \nu}} {{\mathit \chi}} }\rangle <(6.3 - 360){\times }10^{-5}$.
|
21
ASHITKOV 2001 result for 0 ${{\mathit \nu}}{{\mathit \chi}}$ of ${}^{100}\mathrm {Mo}$ is less stringent than ARNOLD 2000 .
|
22
DANEVICH 2001 obtain limit for the 0 ${{\mathit \nu}}{{\mathit \chi}}$ decay with Majoron emission of ${}^{160}\mathrm {Gd}$ using Gd$_{2}$SiO$_{5}$:Ce crystal scintillators.
|
23
DANEVICH 2001 obtain limit for the 0 ${{\mathit \nu}}$2 ${{\mathit \chi}}$ decay with 2 Majoron emission of ${}^{160}\mathrm {Gd}$.
|
24
ARNOLD 2000 reports limit for the 0 ${{\mathit \nu}}{{\mathit \chi}}$ decay with Majoron emission derived from tracking calorimeter NEMO$~$2. Using ${}^{82}\mathrm {Se}$ source: $\langle \mathit g_{ {{\mathit \nu}} {{\mathit \chi}} }\rangle <1.6 \times 10^{-4}$. Matrix element from GUENTHER 1996 .
|
25
Using ${}^{96}\mathrm {Zr}$ source: $\langle \mathit g_{ {{\mathit \nu}} {{\mathit \chi}} }\rangle <2.6 \times 10^{-4}$. Matrix element from ARNOLD 1999 .
|
26
ARNOLD 2000 reports limit for the 0 ${{\mathit \nu}}$2 ${{\mathit \chi}}$ decay with two Majoron emission derived from tracking calorimeter NEMO$~$2.
|
27
ARNOLD 1998 determine the limit for 0${{\mathit \nu}_{{\chi}}}$ decay with Majoron emission of ${}^{82}\mathrm {Se}$ using the NEMO-2 tracking detector. They derive $\langle \mathit g_{{{\mathit \nu}_{{\chi}}}}\rangle $ $<2.3 - 4.3 \times 10^{-4}$ with several nuclear matrix elements.
|
28
LUESCHER 1998 report a limit for the 0${{\mathit \nu}}$ decay with Majoron emission of ${}^{136}\mathrm {Xe}$ using ${}^{}\mathrm {Xe}$ TPC. This result is more stringent than BARABASH 1989 . Using the matrix elements of ENGEL 1988 , they obtain a limit on $\langle \mathit g_{ {{\mathit \nu}} {{\mathit \chi}} }\rangle $ of $2.0 \times 10^{-4}$.
|
29
See Table$~$1 in GUENTHER 1996 for limits on the Majoron coupling in different models.
|