Spin-Independent Cross Section Limits for Dark Matter Particle (${{\mathit X}^{0}}$) on Nucleon

For ${\mathit m}_{{{\mathit X}^{0}}}$ = 100 GeV

INSPIRE   PDGID:
S030DI2
For limits from ${{\mathit X}^{0}}$ annihilation in the Sun, the assumed annihilation final state is shown in parenthesis in the comment.
VALUE (pb) CL% DOCUMENT ID TECN  COMMENT
• • We do not use the following data for averages, fits, limits, etc. • •
$<2.5 \times 10^{-11}$ 90 1
AALBERS
2023
LZ SI scatter on ${}^{}\mathrm {Xe}$
$<2 \times 10^{-8}$ 90 2
ABE
2023E
XMAS WIMP search
$<6 \times 10^{-11}$ 90 3
APRILE
2023A
XENT SI WIMP search
$<6 \times 10^{-11}$ 90 4
MENG
2021B
PNDX ${}^{}\mathrm {Xe}$ WIMP search
5
ADHIKARI
2020
DEAP ${}^{}\mathrm {Ar}$
$<5 \times 10^{-5}$ 6
FELIZARDO
2020
SMPL ${}^{}\mathrm {W}$
$<4.2 \times 10^{-10}$ 90 7
WANG
2020G
PNDX ${}^{}\mathrm {Xe}$ TPC
$<4 \times 10^{-8}$ 90 8
ABE
2019
XMAS ${}^{}\mathrm {Xe}$
$<3.9 \times 10^{-9}$ 90 9
AJAJ
2019
DEAP ${}^{}\mathrm {Ar}$
$<2.3 \times 10^{-6}$ 90 10
ADHIKARI
2018
C100 ${}^{}\mathrm {NaI}$
$<1.14 \times 10^{-8}$ 90 11
AGNES
2018A
DS50 ${}^{}\mathrm {Ar}$
$<2 \times 10^{-8}$ 90 12
AGNESE
2018A
CDMS ${}^{}\mathrm {Ge}$
$<1.2 \times 10^{-8}$ 90 13
AMAUDRUZ
2018
DEAP ${}^{}\mathrm {Ar}$
$<9.12 \times 10^{-11}$ 90 14
APRILE
2018
XE1T ${}^{}\mathrm {Xe}$
15
REN
2018
PNDX SIDM at PDX-II
$<1.7 \times 10^{-10}$ 90 16
AKERIB
2017
LUX ${}^{}\mathrm {Xe}$
$<1.2 \times 10^{-10}$ 90 17
APRILE
2017G
XE1T ${}^{}\mathrm {Xe}$
$<1.2 \times 10^{-10}$ 90 18
CUI
2017A
PNDX ${}^{}\mathrm {Xe}$
$<2.0 \times 10^{-8}$ 90
AGNES
2016
DS50 ${}^{}\mathrm {Ar}$
$<1 \times 10^{-9}$ 90 19
AKERIB
2016
LUX ${}^{}\mathrm {Xe}$
$<1 \times 10^{-9}$ 90 20
APRILE
2016B
X100 ${}^{}\mathrm {Xe}$
$<2 \times 10^{-8}$ 90 21
TAN
2016
PNDX ${}^{}\mathrm {Xe}$
$<4 \times 10^{-10}$ 90 22
TAN
2016B
PNDX ${}^{}\mathrm {Xe}$
$<6 \times 10^{-8}$ 90
AGNES
2015
DS50 ${}^{}\mathrm {Ar}$
$<4 \times 10^{-8}$ 90 23
AGNESE
2015B
CDM2 ${}^{}\mathrm {Ge}$
$<7.13 \times 10^{-6}$ 90
CHOI
2015
SKAM ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit b}}{{\overline{\mathit b}}}$)
$<6.26 \times 10^{-7}$ 90
CHOI
2015
SKAM ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit W}^{+}}{{\mathit W}^{-}}$)
$<2.76 \times 10^{-7}$ 90
CHOI
2015
SKAM ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$)
$<1.5 \times 10^{-8}$ 90 24
XIAO
2015
PNDX ${}^{}\mathrm {Xe}$
$<1 \times 10^{-9}$ 90
AKERIB
2014
LUX ${}^{}\mathrm {Xe}$
$<4.0 \times 10^{-6}$ 90 25
AVRORIN
2014
BAIK ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit W}^{+}}{{\mathit W}^{-}}$)
$<1.0 \times 10^{-4}$ 90 25
AVRORIN
2014
BAIK ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit b}}{{\overline{\mathit b}}}$)
$<1.6 \times 10^{-6}$ 90 25
AVRORIN
2014
BAIK ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$)
$<5 \times 10^{-6}$ 90
FELIZARDO
2014
SMPL C$_{2}$ClF$_{5}$
$<6.01 \times 10^{-7}$ 90 26
AARTSEN
2013
ICCB ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit W}^{+}}{{\mathit W}^{-}}$)
$<3.30 \times 10^{-5}$ 90 26
AARTSEN
2013
ICCB ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit b}}{{\overline{\mathit b}}}$)
$<1.9 \times 10^{-6}$ 90 27
ADRIAN-MARTIN..
2013
ANTR ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit W}^{+}}{{\mathit W}^{-}}$)
$<1.2 \times 10^{-4}$ 90 27
ADRIAN-MARTIN..
2013
ANTR ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit b}}{{\overline{\mathit b}}}$)
$<7.6 \times 10^{-7}$ 90 27
ADRIAN-MARTIN..
2013
ANTR ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$)
$<2 \times 10^{-6}$ 90 28
AGNESE
2013
CDM2 ${}^{}\mathrm {Si}$
$<1.6 \times 10^{-6}$ 90 29
BOLIEV
2013
BAKS ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit W}^{+}}{{\mathit W}^{-}}$)
$<1.9 \times 10^{-5}$ 90 29
BOLIEV
2013
BAKS ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit b}}{{\overline{\mathit b}}}$)
$<7.1 \times 10^{-7}$ 90 29
BOLIEV
2013
BAKS ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$)
$<3.2 \times 10^{-4}$ 90 30
LI
2013B
TEXO WIMPs on ${}^{}\mathrm {Ge}$
$<1.67 \times 10^{-6}$ 90 31
ABBASI
2012
ICCB ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit W}^{+}}{{\mathit W}^{-}}$)
$<1.07 \times 10^{-4}$ 90 31
ABBASI
2012
ICCB ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit b}}{{\overline{\mathit b}}}$)
$<4 \times 10^{-8}$ 90
AKIMOV
2012
ZEP3 ${}^{}\mathrm {Xe}$
$<1.4 \times 10^{-6}$ 90 32
ANGLOHER
2012
CRES CaWO$_{4}$
$<3 \times 10^{-9}$ 90 33
APRILE
2012
X100 ${}^{}\mathrm {Xe}$
$<3 \times 10^{-7}$ 90
BEHNKE
2012
COUP CF$_{3}$I
$<7 \times 10^{-6}$
FELIZARDO
2012
SMPL C$_{2}$ClF$_{5}$
$<2.5 \times 10^{-7}$ 90 34
KIM
2012
KIMS CsI
$<2 \times 10^{-4}$ 90
AALSETH
2011
CGNT ${}^{}\mathrm {Ge}$
35
AHMED
2011
CDM2 ${}^{}\mathrm {Ge}$, inelastic
$<3.3 \times 10^{-8}$ 90 36
AHMED
2011A
RVUE ${}^{}\mathrm {Ge}$
37
AJELLO
2011
FLAT
$<3 \times 10^{-8}$ 90 38
APRILE
2011
X100 ${}^{}\mathrm {Xe}$
39
APRILE
2011A
X100 ${}^{}\mathrm {Xe}$, inelastic
$<1 \times 10^{-8}$ 90 33
APRILE
2011B
X100 ${}^{}\mathrm {Xe}$
$<5 \times 10^{-8}$ 90 40
ARMENGAUD
2011
EDE2 ${}^{}\mathrm {Ge}$
41
HORN
2011
ZEP3 ${}^{}\mathrm {Xe}$
$<4 \times 10^{-8}$ 90
AHMED
2010
CDM2 ${}^{}\mathrm {Ge}$
$<9 \times 10^{-6}$ 90
AKERIB
2010
CDM2 ${}^{}\mathrm {Si}$, ${}^{}\mathrm {Ge}$, low threshold
42
AKIMOV
2010
ZEP3 ${}^{}\mathrm {Xe}$, inelastic
$<5 \times 10^{-8}$ 90
APRILE
2010
X100 ${}^{}\mathrm {Xe}$
$<1 \times 10^{-7}$ 90
ARMENGAUD
2010
EDE2 ${}^{}\mathrm {Ge}$
$<3 \times 10^{-5}$ 90
FELIZARDO
2010
SMPL C$_{2}$ClF$_{3}$
$<5 \times 10^{-8}$ 90 43
AHMED
2009
CDM2 ${}^{}\mathrm {Ge}$
44
ANGLE
2009
XE10 ${}^{}\mathrm {Xe}$, inelastic
$<3 \times 10^{-4}$ 90
LIN
2009
TEXO ${}^{}\mathrm {Ge}$
45
GIULIANI
2005
RVUE
1  AALBERS 2023 present first LZ limits on SI WIMP-nucleon scatter from ${}^{}\mathrm {Xe}$. ${{\mathit \sigma}^{SI}}({{\mathit \chi}}{{\mathit p}}$) $<$ $2.5 \times 10^{-11}$ pb for m(${{\mathit \chi}}$) = 100 GeV.
2  ABE 2023E search for WIMP scatter on ${}^{}\mathrm {Xe}$ in XMASS. No signal observed. Require ${{\mathit \sigma}^{SI}}$ $<$ $2 \times 10^{-7}$ pb for m(${{\mathit \chi}}$) = 100 GeV.
3  APRILE 2023A present first results from Xe-nton SI WIMP search. No signal observed. Quoted limit is for m(${{\mathit \chi}}$) = 100 GeV.
4  MENG 2021B search for SI WIMP interaction with 3.7 t ${}^{}\mathrm {Xe}$ and 0.63 t yr exposure. No signal observed. Limits placed in m(DM) vs. ${{\mathit \sigma}}{}^{SI}$ plane.
5  ADHIKARI 2020 search for SI WIMP scatter from ${}^{}\mathrm {Ar}$ in AJAJ 2019 data. No signal observed. Limits placed on ${{\mathit \sigma}^{p}}$ vs. m(WIMP) for various assumed operators and models.
6  FELIZARDO 2020 presents 2014 SIMPLE bounds on WIMP DM using ${}^{}\mathrm {C}_{2}{}^{}\mathrm {Cl}{}^{}\mathrm {F}_{5}$ target .
7  WANG 2020G search for SI WIMP scatter on ${}^{}\mathrm {Xe}$ with 132 t d exposure of PANDAX-II .
8  ABE 2019 search for SI DD in single phase ${}^{}\mathrm {Xe}$; no signal; require ${{\mathit \sigma}^{SI}}({{\mathit \chi}}{{\mathit p}}$) $<$ $4 \times 10^{-8}$ pb for m(${{\mathit \chi}}$) $\sim{}$ 100 GeV.
9  AJAJ 2019 search for SI WIMP-nucleon scatter with 758 tonne day exposure of single phase liquid ${}^{}\mathrm {Ar}$; no signal: require ${{\mathit \sigma}^{SI}}({{\mathit \chi}}{{\mathit N}}$) $<$ $3.9 \times 10^{-9}$ pb for m(${{\mathit \chi}}$) = 100 GeV.
10  ADHIKARI 2018 search for WIMP scatter on ${}^{}\mathrm {NaI}$;limit set ${{\mathit \sigma}}{}^{SI}({{\mathit \chi}}{{\mathit p}}$) $<$ $2.3 \times 10^{-6}$ pb for m(${{\mathit \chi}}$) = 100 GeV.
11  AGNES 2018A search for WIMP scatter on 46.4 kg ${}^{}\mathrm {Ar}$; no signal; require ${{\mathit \sigma}^{SI}}({{\mathit \chi}}{{\mathit N}}$) $<$ $1.14 \times 10^{-8}$ pb for m(${{\mathit \chi}}$) = 100 GeV.
12  AGNESE 2018A set limit ${{\mathit \sigma}^{SI}}({{\mathit \chi}}{{\mathit N}}$) $<$ $2 \times 10^{-8}$ pb for m(WIMP) = 100 GeV.
13  AMAUDRUZ 2018 search for WIMP scatter on ${}^{}\mathrm {Ar}$ with DEAP-3600; limits set: ${{\mathit \sigma}}{}^{SI}({{\mathit \chi}}$p) $<$ $1.2 \times 10^{-8}$ pb for m(WIMP) = 100 GeV.
14  APRILE 2018 search for WIMP scatter on 1.3 t liquid ${}^{}\mathrm {Xe}$; no signal; require ${{\mathit \sigma}^{SI}}({{\mathit \chi}}{{\mathit p}}$) $<$ $9.12 \times 10^{-11}$ pb for m(${{\mathit \chi}}$) = 100 GeV.
15  REN 2018 search for self-interacting DM at Panda-X-II with a total exposure of 54 ton day; limits set in m(DM) vs. m(mediator) plane.
16  AKERIB 2017 exclude SI cross section $>$ $1.7 \times 10^{-10}$ pb for m(WIMP) = 100 GeV. Uses complete LUX data set.
17  APRILE 2017G set limit $\sigma {}^{SI}({{\mathit \chi}}{{\mathit p}}$) $<$ 1.2 $10^{-10}$ pb for m(WIMP) = 100 GeV using 1 ton fiducial mass ${}^{}\mathrm {Xe}$ TPC. Exposure is 34.2 live days.
18  CUI 2017A search for SI WIMP scatter; limits placed in ${{\mathit \sigma}^{SI}}({{\mathit \chi}}{{\mathit N}}$) vs. m(${{\mathit \chi}}$) plane for m $\sim{}$ $10 - 1 \times 10^{4}$ GeV using 54 ton-day exposure of ${}^{}\mathrm {Xe}$.
19  AKERIB 2016 re-analysis of 2013 data exclude SI cross section $>$ $1 \times 10^{-9}$ pb for $\mathit m$(WIMP) = 100 GeV on ${}^{}\mathrm {Xe}$ target.
20  APRILE 2016B combined 447 live days using ${}^{}\mathrm {Xe}$ target exclude ${{\mathit \sigma}}$(SI) $>$ $1.1 \times 10^{-9}$ pb for m(WIMP) = 50 GeV.
21  TAN 2016 search for WIMP scatter off ${}^{}\mathrm {Xe}$ target; see SI exclusion plot Fig. 6.
22  TAN 2016B search for WIMP-${{\mathit p}}$ scatter off ${}^{}\mathrm {Xe}$ target; see Fig. 5 for SI exclusion.
23  AGNESE 2015B reanalyse AHMED 2010 data.
24  XIAO 2015 search for WIMP scatter on ${}^{}\mathrm {Xe}$ with PandaX-I; limits placed in ${{\mathit \sigma}^{SI}}({{\mathit \chi}}{{\mathit N}}$) vs. m(${{\mathit \chi}}$) plane for m(${{\mathit \chi}}$) $\sim{}$ $5 - 100$ GeV.
25  AVRORIN 2014 search for neutrinos from the Sun arising from the pair annihilation of ${{\mathit X}^{0}}$ trapped by the Sun in data taken between 1998 and 2003. See their Table 1 for limits assuming annihilation into neutrino pairs.
26  AARTSEN 2013 search for neutrinos from the Sun arising from the pair annihilation of ${{\mathit X}^{0}}$ trapped by the sun in data taken between June 2010 and May 2011.
27  ADRIAN-MARTINEZ 2013 search for neutrinos from the Sun arising from the pair annihilation of ${{\mathit X}^{0}}$ trapped by the sun in data taken between Jan. 2007 and Dec. 2008.
28  AGNESE 2013 use data taken between Oct. 2006 and July 2007.
29  BOLIEV 2013 search for neutrinos from the Sun arising from the pair annihilation of ${{\mathit X}^{0}}$ trapped by the sun in data taken from 1978 to 2009. See also SUVOROVA 2013 for an older analysis of the same data.
30  LI 2013B search for WIMP scatter on ${}^{}\mathrm {Ge}$; limits placed in ${{\mathit \sigma}^{SI}}({{\mathit \chi}}{{\mathit N}}$) vs. m(${{\mathit \chi}}$) plane for m(${{\mathit \chi}}$) $\sim{}$ $4 - 100$ GeV.
31  ABBASI 2012 search for neutrinos from the Sun arising from the pair annihilation of ${{\mathit X}^{0}}$ trapped by the Sun. The amount of ${{\mathit X}^{0}}$ depends on the ${{\mathit X}^{0}}$-proton cross section.
32  Reanalysis of ANGLOHER 2009 data with all three nuclides. See also BROWN 2012.
33  See also APRILE 2014A.
34  See their Fig. 6 for a limit on inelastically scattering ${{\mathit X}^{0}}$ for ${\mathit m}_{{{\mathit X}^{0}}}$ = 70 GeV.
35  AHMED 2011 search for ${{\mathit X}^{0}}$ inelastic scattering. See their Fig. $8 - 10$ for limits.
36  AHMED 2011A combine CDMS and EDELWEISS data.
37  AJELLO 2011 search for ${{\mathit e}^{\pm}}$ flux from ${{\mathit X}^{0}}$ annihilations in the Sun. Models in which ${{\mathit X}^{0}}$ annihilates into an intermediate long-lived weakly interacting particles or ${{\mathit X}^{0}}$ scatters inelastically are constrained. See their Fig. $6 - 8$ for limits.
38  APRILE 2011 reanalyze APRILE 2010 data.
39  APRILE 2011A search for ${{\mathit X}^{0}}$ inelastic scattering. See their Fig. 2 and 3 for limits. See also APRILE 2014A.
40  Supersedes ARMENGAUD 2010. A limit on inelastic cross section is also given.
41  HORN 2011 perform detector calibration by neutrons. Earlier results are only marginally affected.
42  AKIMOV 2010 give cross section limits for inelastically scattering dark matter. See their Fig.$~$4.
43  Superseded by AHMED 2010.
44  ANGLE 2009 search for ${{\mathit X}^{0}}$ inelastic scattering. See their Fig. 4 for limits.
45  GIULIANI 2005 analyzes the spin-independent ${{\mathit X}^{0}}$-nucleon cross section limits with both isoscalar and isovector couplings. See their Fig. 3 and 4 for limits on the couplings.
References