Spin-Independent Cross Section Limits for Dark Matter Particle (${{\boldsymbol X}^{0}}$) on Nucleon

For ${\boldsymbol m}_{{{\boldsymbol X}^{0}}}$ = 1 TeV INSPIRE search

For limits from ${{\mathit X}^{0}}$ annihilation in the Sun, the assumed annihilation final state is shown in parenthesis in the comment.
VALUE (pb) CL% DOCUMENT ID TECN  COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • •
$<3 \times 10^{-6}$ 90 1
YAGUNA
2019
${}^{}\mathrm {Ar}$; I-spin viol DM
$<3.8 \times 10^{-8}$ 90 2
AGNES
2018A
DS50 ${}^{}\mathrm {Ar}$
$<8.24 \times 10^{-10}$ 90 3
APRILE
2018
XE1T ${}^{}\mathrm {Xe}$
$<2 \times 10^{-9}$ 90 4
AKERIB
2017
LUX ${}^{}\mathrm {Xe}$
$<0.3$ 90 5
CHEN
2017E
PNDX ${{\mathit \chi}}$ ${{\mathit N}}$ $\rightarrow$ ${{\mathit \chi}^{*}}$ $\rightarrow$ ${{\mathit \chi}}{{\mathit \gamma}}$
$<1.2 \times 10^{-9}$ 90 6
CUI
2017A
PNDX SI WIMPs on ${}^{}\mathrm {Xe}$
$<8.6 \times 10^{-8}$ 90
AGNES
2016
DS50 ${}^{}\mathrm {Ar}$
$<2 \times 10^{-7}$ 90
AGNES
2015
DS50 ${}^{}\mathrm {Ar}$
$<2 \times 10^{-7}$ 90 7
AGNESE
2015B
CDM2 ${}^{}\mathrm {Ge}$
$<1 \times 10^{-8}$ 90
AKERIB
2014
LUX ${}^{}\mathrm {Xe}$
$<2.2 \times 10^{-6}$ 90 8
AVRORIN
2014
BAIK ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ ( ${{\mathit W}^{+}}{{\mathit W}^{-}}$ )
$<5.5 \times 10^{-5}$ 90 8
AVRORIN
2014
BAIK ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ ( ${{\mathit b}}{{\overline{\mathit b}}}$ )
$<6.8 \times 10^{-7}$ 90 8
AVRORIN
2014
BAIK ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ ( ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ )
$<3.46 \times 10^{-7}$ 90 9
AARTSEN
2013
ICCB ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ ( ${{\mathit W}^{+}}{{\mathit W}^{-}}$ )
$<7.75 \times 10^{-6}$ 90 9
AARTSEN
2013
ICCB ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ ( ${{\mathit b}}{{\overline{\mathit b}}}$ )
$<6.9 \times 10^{-7}$ 90 10
ADRIAN-MARTIN..
2013
ANTR ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ ( ${{\mathit W}^{+}}{{\mathit W}^{-}}$ )
$<1.5 \times 10^{-5}$ 90 10
ADRIAN-MARTIN..
2013
ANTR ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ ( ${{\mathit b}}{{\overline{\mathit b}}}$ )
$<1.8 \times 10^{-7}$ 90 10
ADRIAN-MARTIN..
2013
ANTR ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ ( ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ )
$<4.3 \times 10^{-6}$ 90 11
BOLIEV
2013
BAKS ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ ( ${{\mathit W}^{+}}{{\mathit W}^{-}}$ )
$<3.4 \times 10^{-5}$ 90 11
BOLIEV
2013
BAKS ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ ( ${{\mathit b}}{{\overline{\mathit b}}}$ )
$<1.2 \times 10^{-6}$ 90 11
BOLIEV
2013
BAKS ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ ( ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ )
$<2.12 \times 10^{-7}$ 90 12
ABBASI
2012
ICCB ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ ( ${{\mathit W}^{+}}{{\mathit W}^{-}}$ )
$<6.56 \times 10^{-6}$ 90 12
ABBASI
2012
ICCB ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ ( ${{\mathit b}}{{\overline{\mathit b}}}$ )
$<4 \times 10^{-7}$ 90
AKIMOV
2012
ZEP3 ${}^{}\mathrm {Xe}$
$<1.1 \times 10^{-5}$ 90 13
ANGLOHER
2012
CRES CaWO$_{4}$
$<2 \times 10^{-8}$ 90 14
APRILE
2012
X100 ${}^{}\mathrm {Xe}$
$<2 \times 10^{-6}$ 90
BEHNKE
2012
COUP CF$_{3}$I
$<4 \times 10^{-6}$
FELIZARDO
2012
SMPL C$_{2}$ClF$_{5}$
$<1.5 \times 10^{-6}$ 90
KIM
2012
KIMS CsI
15
AHMED
2011
CDM2 ${}^{}\mathrm {Ge}$, inelastic
$<1.5 \times 10^{-7}$ 90 16
AHMED
2011A
RVUE ${}^{}\mathrm {Ge}$
$<2 \times 10^{-7}$ 90 17
APRILE
2011
X100 ${}^{}\mathrm {Xe}$
$<8 \times 10^{-8}$ 90 14
APRILE
2011B
X100 ${}^{}\mathrm {Xe}$
$<2 \times 10^{-7}$ 90 18
ARMENGAUD
2011
EDE2 ${}^{}\mathrm {Ge}$
19
HORN
2011
ZEP3 ${}^{}\mathrm {Xe}$
$<2 \times 10^{-7}$ 90
AHMED
2010
CDM2 ${}^{}\mathrm {Ge}$
$<4 \times 10^{-7}$ 90
APRILE
2010
X100 ${}^{}\mathrm {Xe}$
$<6 \times 10^{-7}$ 90
ARMENGAUD
2010
EDE2 ${}^{}\mathrm {Ge}$
$<3.5 \times 10^{-7}$ 90 20
AHMED
2009
CDM2 ${}^{}\mathrm {Ge}$
1  YAGUNA 2019 recasts DEAP-3600 single-phase liquid argon results in limit for isospin violating DM; for ${{\mathit f}_{{n}}}/{{\mathit f}_{{p}}}$ = $-0.69$, requires ${{\mathit \sigma}^{SI}}$( ${{\mathit \chi}}{{\mathit p}}$ ) $<$ $3 \times 10^{-6}$ pb for m(${{\mathit \chi}}$) = 1 TeV.
2  AGNES 2018A search for WIMP scatter on 46.4 kg ${}^{}\mathrm {Ar}$; no signal; require ${{\mathit \sigma}^{SI}}$( ${{\mathit \chi}}{{\mathit N}}$ ) $<$ $3.8 \times 10^{-8}$ pb for m(${{\mathit \chi}}$) = 1 TeV.
3  APRILE 2018 search for WIMP scatter on 1.3 t ${}^{}\mathrm {Xe}$; no signal seen; require ${{\mathit \sigma}^{SI}}$( ${{\mathit \chi}}{{\mathit p}}$ ) $<$ $8.24 \times 10^{-10}$ pb for m(${{\mathit \chi}}$) = 1 TeV.
4  AKERIB 2017 search for WIMP scatter on ${}^{}\mathrm {Xe}$ using complete LUX data set; limits placed in ${{\mathit \sigma}^{SI}}$( ${{\mathit \chi}}{{\mathit N}}$ ) vs. m(${{\mathit \chi}}$) plane for m(${{\mathit \chi}}$) $\sim{}$ $5 - 1 \times 10^{5}$ GeV.
5  CHEN 2017E search for inelastic WIMP scatter on ${}^{}\mathrm {Xe}$; require ${{\mathit \sigma}}{}^{SI}$( ${{\mathit \chi}}{{\mathit N}}$ ) $<$ 0.3 pb for m(${{\mathit \chi}}$) = 1 TeV and (mass difference) = 300 keV.
6  CUI 2017A search for WIMP scatter using 54 ton-day exposure of ${}^{}\mathrm {Xe}$; limits placed in ${{\mathit \sigma}^{SI}}$( ${{\mathit \chi}}{{\mathit N}}$ ) vs. m(${{\mathit \chi}}$) plane for m $\sim{}$ $10 - 1 \times 10^{4}$ GeV.
7  AGNESE 2015B reanalyse AHMED 2010 data.
8  AVRORIN 2014 search for neutrinos from the Sun arising from the pair annihilation of ${{\mathit X}^{0}}$ trapped by the Sun in data taken between 1998 and 2003. See their Table 1 for limits assuming annihilation into neutrino pairs.
9  AARTSEN 2013 search for neutrinos from the Sun arising from the pair annihilation of ${{\mathit X}^{0}}$ trapped by the sun in data taken between June 2010 and May 2011.
10  ADRIAN-MARTINEZ 2013 search for neutrinos from the Sun arising from the pair annihilation of ${{\mathit X}^{0}}$ trapped by the sun in data taken between Jan. 2007 and Dec. 2008.
11  BOLIEV 2013 search for neutrinos from the Sun arising from the pair annihilation of ${{\mathit X}^{0}}$ trapped by the sun in data taken from 1978 to 2009. See also SUVOROVA 2013 for an older analysis of the same data.
12  ABBASI 2012 search for neutrinos from the Sun arising from the pair annihilation of ${{\mathit X}^{0}}$ trapped by the Sun. The amount of ${{\mathit X}^{0}}$ depends on the ${{\mathit X}^{0}}$-proton cross section.
13  Reanalysis of ANGLOHER 2009 data with all three nuclides. See also BROWN 2012 .
14  See also APRILE 2014A.
15  AHMED 2011 search for ${{\mathit X}^{0}}$ inelastic scattering. See their Fig. $8 - 10$ for limits.
16  AHMED 2011A combine CDMS and EDELWEISS data.
17  APRILE 2011 reanalyze APRILE 2010 data.
18  Supersedes ARMENGAUD 2010 . A limit on inelastic cross section is also given.
19  HORN 2011 perform detector calibration by neutrons. Earlier results are only marginally affected.
20  Superseded by AHMED 2010 .
  References:
YAGUNA 2019
JCAP 1904 041 New Constraints on Xenonphobic Dark Matter from DEAP-3600
AGNES 2018A
PR D98 102006 DarkSide-50 532-day Dark Matter Search with Low-Radioactivity Argon
APRILE 2018
PRL 121 111302 Dark Matter Search Results from a One Ton-Year Exposure of XENON1T
AKERIB 2017
PRL 118 021303 Results from a Search for Dark Matter in the Complete LUX Exposure
CHEN 2017E
PR D96 102007 Exploring the Dark Matter Inelastic Frontier with 79.6 Days of PandaX-II Data
CUI 2017A
PRL 119 181302 Dark Matter Results From 54-Ton-Day Exposure of PandaX-II Experiment
AGNES 2016
PR D93 081101 Results from the First use of Low Radioactivity Argon in a Dark Matter Search
AGNES 2015
PL B743 456 First Results from the DarkSide-50 Dark Matter Experiment at Laboratori Nazionali del Gran Sasso
AGNESE 2015B
PR D92 072003 Improved WIMP-Search Reach of the CDMS II Germanium Data
AKERIB 2014
PRL 112 091303 First Results from the LUX Dark Matter Experiment at the Sanford Underground Research Facility
AVRORIN 2014
ASP 62 12 Search for Neutrino Emission from Relic Dark Matter in the Sun with the Baikal NT200 Detector
AARTSEN 2013
PRL 110 131302 Search for Dark Matter Annihilations in the Sun with the 79-String IceCube Detector
ADRIAN-MARTINEZ 2013
JCAP 1311 032 First Results on Dark Matter Annihilation in the Sun using the ANTARES Neutrino Telescope
BOLIEV 2013
JCAP 1309 019 Search for Muon Signal from Dark Matter Annihilations in the Sun with the Baksan Underground Scintillator Telescope for 24.12 Years
ABBASI 2012
PR D85 042002 Multiyear Search for Dark Matter Annihilations in the Sun with the AMANDA-II and IceCube Detectors
AKIMOV 2012
PL B709 14 WIMP-Nucleon Cross-Section Results from the Second Science Run of ZEPLIN-II
ANGLOHER 2012
EPJ C72 1971 Results from 730 kg days of the CRESST-II Dark Matter Search
APRILE 2012
PRL 109 181301 Dark Matter Results from 225 Live Days of XENON100 Data
BEHNKE 2012
PR D86 052001 First Dark Matter Search Results from a 4-kg CF$_{3}$I Bubble Chamber Operated in a Deep Underground Site
FELIZARDO 2012
PRL 108 201302 Final Analysis and Results of the Phase II SIMPLE Dark Matter Search
KIM 2012
PRL 108 181301 New Limits on Interactions between Weakly Interacting Massive Particles and Nucleons Obtained with CsI(Tl) Crystal Detectors
AHMED 2011
PR D83 112002 Search for Inelastic Dark Matter with the CDMS II Experiment
AHMED 2011A
PR D84 011102 Combined Limits on WIMPs from the CDMS and EDELWEISS Experiments
APRILE 2011
PR D84 052003 Likelihood Approach to the First Dark Matter Results from XENON100
APRILE 2011B
PRL 107 131302 Dark Matter Results from 100 Live Days of XENON100 Data
ARMENGAUD 2011
PL B702 329 Final Results of the EDELWEISS-II WIMP Search using a 4-kg Array of Cryogenic Germanium Detectors with Interleaved Electrodes
HORN 2011
PL B705 471 Nuclear Recoil Scintillation and Ionisation Yields in Liquid Xenon from ZEPLIN-III Data
AHMED 2010
SCI 327 1619 Dark Matter Search Results from the CDMS II Experiment
APRILE 2010
PRL 105 131302 First Dark Matter Results from the XENON100 Experiment
ARMENGAUD 2010
PL B687 294 First Results of the EDELWEISS-II WIMP Search using ${}^{}\mathrm {Ge}$ Cryogenic Detectors with Interleaved Electrodes
AHMED 2009
PRL 102 011301 Search for Weakly Interacting Massive Particles with the First Five-Tower Data from the Cryogenic Dark Matter Search at the Soudan Underground Laboratory