Spin-Independent Cross Section Limits for Dark Matter Particle (${{\mathit X}^{0}}$) on Nucleon

For ${\mathit m}_{{{\mathit X}^{0}}}$ = 1 TeV

INSPIRE   PDGID:
S030DI3
For limits from ${{\mathit X}^{0}}$ annihilation in the Sun, the assumed annihilation final state is shown in parenthesis in the comment.
VALUE (pb) CL% DOCUMENT ID TECN  COMMENT
• • We do not use the following data for averages, fits, limits, etc. • •
$<2.8 \times 10^{-10}$ 90 1
AALBERS
2023
LZ SI scatter on ${}^{}\mathrm {Xe}$
$<1 \times 10^{-7}$ 90 2
ABE
2023E
XMAS WIMP search
$<5 \times 10^{-10}$ 90 3
MENG
2021B
PNDX ${}^{}\mathrm {Xe}$ WIMP search
4
ADHIKARI
2020
DEAP ${}^{}\mathrm {Ar}$
$<4 \times 10^{-9}$ 90 5
WANG
2020G
PNDX ${}^{}\mathrm {Xe}$ TPC
$<3 \times 10^{-6}$ 90 6
YAGUNA
2019
${}^{}\mathrm {Ar}$; I-spin viol DM
$<3.8 \times 10^{-8}$ 90 7
AGNES
2018A
DS50 ${}^{}\mathrm {Ar}$
$<8.24 \times 10^{-10}$ 90 8
APRILE
2018
XE1T ${}^{}\mathrm {Xe}$
$<2 \times 10^{-9}$ 90 9
AKERIB
2017
LUX ${}^{}\mathrm {Xe}$
$<0.3$ 90 10
CHEN
2017E
PNDX ${{\mathit \chi}}$ ${{\mathit N}}$ $\rightarrow$ ${{\mathit \chi}^{*}}$ $\rightarrow$ ${{\mathit \chi}}{{\mathit \gamma}}$
$<1.2 \times 10^{-9}$ 90 11
CUI
2017A
PNDX SI WIMPs on ${}^{}\mathrm {Xe}$
$<8.6 \times 10^{-8}$ 90
AGNES
2016
DS50 ${}^{}\mathrm {Ar}$
$<2 \times 10^{-7}$ 90
AGNES
2015
DS50 ${}^{}\mathrm {Ar}$
$<2 \times 10^{-7}$ 90 12
AGNESE
2015B
CDM2 ${}^{}\mathrm {Ge}$
$<1 \times 10^{-8}$ 90
AKERIB
2014
LUX ${}^{}\mathrm {Xe}$
$<2.2 \times 10^{-6}$ 90 13
AVRORIN
2014
BAIK ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit W}^{+}}{{\mathit W}^{-}}$)
$<5.5 \times 10^{-5}$ 90 13
AVRORIN
2014
BAIK ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit b}}{{\overline{\mathit b}}}$)
$<6.8 \times 10^{-7}$ 90 13
AVRORIN
2014
BAIK ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$)
$<3.46 \times 10^{-7}$ 90 14
AARTSEN
2013
ICCB ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit W}^{+}}{{\mathit W}^{-}}$)
$<7.75 \times 10^{-6}$ 90 14
AARTSEN
2013
ICCB ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit b}}{{\overline{\mathit b}}}$)
$<6.9 \times 10^{-7}$ 90 15
ADRIAN-MARTIN..
2013
ANTR ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit W}^{+}}{{\mathit W}^{-}}$)
$<1.5 \times 10^{-5}$ 90 15
ADRIAN-MARTIN..
2013
ANTR ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit b}}{{\overline{\mathit b}}}$)
$<1.8 \times 10^{-7}$ 90 15
ADRIAN-MARTIN..
2013
ANTR ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$)
$<4.3 \times 10^{-6}$ 90 16
BOLIEV
2013
BAKS ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit W}^{+}}{{\mathit W}^{-}}$)
$<3.4 \times 10^{-5}$ 90 16
BOLIEV
2013
BAKS ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit b}}{{\overline{\mathit b}}}$)
$<1.2 \times 10^{-6}$ 90 16
BOLIEV
2013
BAKS ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$)
$<2.12 \times 10^{-7}$ 90 17
ABBASI
2012
ICCB ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit W}^{+}}{{\mathit W}^{-}}$)
$<6.56 \times 10^{-6}$ 90 17
ABBASI
2012
ICCB ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit b}}{{\overline{\mathit b}}}$)
$<4 \times 10^{-7}$ 90
AKIMOV
2012
ZEP3 ${}^{}\mathrm {Xe}$
$<1.1 \times 10^{-5}$ 90 18
ANGLOHER
2012
CRES CaWO$_{4}$
$<2 \times 10^{-8}$ 90 19
APRILE
2012
X100 ${}^{}\mathrm {Xe}$
$<2 \times 10^{-6}$ 90
BEHNKE
2012
COUP CF$_{3}$I
$<4 \times 10^{-6}$
FELIZARDO
2012
SMPL C$_{2}$ClF$_{5}$
$<1.5 \times 10^{-6}$ 90
KIM
2012
KIMS CsI
20
AHMED
2011
CDM2 ${}^{}\mathrm {Ge}$, inelastic
$<1.5 \times 10^{-7}$ 90 21
AHMED
2011A
RVUE ${}^{}\mathrm {Ge}$
$<2 \times 10^{-7}$ 90 22
APRILE
2011
X100 ${}^{}\mathrm {Xe}$
$<8 \times 10^{-8}$ 90 19
APRILE
2011B
X100 ${}^{}\mathrm {Xe}$
$<2 \times 10^{-7}$ 90 23
ARMENGAUD
2011
EDE2 ${}^{}\mathrm {Ge}$
24
HORN
2011
ZEP3 ${}^{}\mathrm {Xe}$
$<2 \times 10^{-7}$ 90
AHMED
2010
CDM2 ${}^{}\mathrm {Ge}$
$<4 \times 10^{-7}$ 90
APRILE
2010
X100 ${}^{}\mathrm {Xe}$
$<6 \times 10^{-7}$ 90
ARMENGAUD
2010
EDE2 ${}^{}\mathrm {Ge}$
$<3.5 \times 10^{-7}$ 90 25
AHMED
2009
CDM2 ${}^{}\mathrm {Ge}$
1  AALBERS 2023 give first LZ limits on WIMP-nucleon scatter from ${}^{}\mathrm {Xe}$. ${{\mathit \sigma}^{SI}}$ $<$ $2.8 \times 10^{-10}$ pb for m(${{\mathit \chi}}$) = 1 TeV.
2  ABE 2023E search for WIMP scatter on ${}^{}\mathrm {Xe}$ in XMASS. No signal observed. Require ${{\mathit \sigma}^{SI}}$ $<$ $2 \times 10^{-7}$ pb for m(${{\mathit \chi}}$) = 1000 GeV.
3  MENG 2021B search for SI WIMP interaction with 3.7 t ${}^{}\mathrm {Xe}$ and 0.63 t yr exposure. No signal observed. Limits placed in m(DM) vs. ${{\mathit \sigma}}{}^{SI}$ plane.
4  ADHIKARI 2020 search for SI WIMP scatter from ${}^{}\mathrm {Ar}$ in AJAJ 2019 data. No signal observed. Limits placed on ${{\mathit \sigma}^{p}}$ vs. m(WIMP) for various assumed operators and models.
5  WANG 2020G search for SI WIMP scatter on ${}^{}\mathrm {Xe}$ with 132 t d exposure of PANDAX-II .
6  YAGUNA 2019 recasts DEAP-3600 single-phase liquid argon results in limit for isospin violating DM; for ${{\mathit f}_{{{n}}}}/{{\mathit f}_{{{p}}}}$ = $-0.69$, requires ${{\mathit \sigma}^{SI}}({{\mathit \chi}}{{\mathit p}}$) $<$ $3 \times 10^{-6}$ pb for m(${{\mathit \chi}}$) = 1 TeV.
7  AGNES 2018A search for WIMP scatter on 46.4 kg ${}^{}\mathrm {Ar}$; no signal; require ${{\mathit \sigma}^{SI}}({{\mathit \chi}}{{\mathit N}}$) $<$ $3.8 \times 10^{-8}$ pb for m(${{\mathit \chi}}$) = 1 TeV.
8  APRILE 2018 search for WIMP scatter on 1.3 t ${}^{}\mathrm {Xe}$; no signal seen; require ${{\mathit \sigma}^{SI}}({{\mathit \chi}}{{\mathit p}}$) $<$ $8.24 \times 10^{-10}$ pb for m(${{\mathit \chi}}$) = 1 TeV.
9  AKERIB 2017 search for WIMP scatter on ${}^{}\mathrm {Xe}$ using complete LUX data set; limits placed in ${{\mathit \sigma}^{SI}}({{\mathit \chi}}{{\mathit N}}$) vs. m(${{\mathit \chi}}$) plane for m(${{\mathit \chi}}$) $\sim{}$ $5 - 1 \times 10^{5}$ GeV.
10  CHEN 2017E search for inelastic WIMP scatter on ${}^{}\mathrm {Xe}$; require ${{\mathit \sigma}}{}^{SI}({{\mathit \chi}}{{\mathit N}}$) $<$ 0.3 pb for m(${{\mathit \chi}}$) = 1 TeV and (mass difference) = 300 keV.
11  CUI 2017A search for WIMP scatter using 54 ton-day exposure of ${}^{}\mathrm {Xe}$; limits placed in ${{\mathit \sigma}^{SI}}({{\mathit \chi}}{{\mathit N}}$) vs. m(${{\mathit \chi}}$) plane for m $\sim{}$ $10 - 1 \times 10^{4}$ GeV.
12  AGNESE 2015B reanalyse AHMED 2010 data.
13  AVRORIN 2014 search for neutrinos from the Sun arising from the pair annihilation of ${{\mathit X}^{0}}$ trapped by the Sun in data taken between 1998 and 2003. See their Table 1 for limits assuming annihilation into neutrino pairs.
14  AARTSEN 2013 search for neutrinos from the Sun arising from the pair annihilation of ${{\mathit X}^{0}}$ trapped by the sun in data taken between June 2010 and May 2011.
15  ADRIAN-MARTINEZ 2013 search for neutrinos from the Sun arising from the pair annihilation of ${{\mathit X}^{0}}$ trapped by the sun in data taken between Jan. 2007 and Dec. 2008.
16  BOLIEV 2013 search for neutrinos from the Sun arising from the pair annihilation of ${{\mathit X}^{0}}$ trapped by the sun in data taken from 1978 to 2009. See also SUVOROVA 2013 for an older analysis of the same data.
17  ABBASI 2012 search for neutrinos from the Sun arising from the pair annihilation of ${{\mathit X}^{0}}$ trapped by the Sun. The amount of ${{\mathit X}^{0}}$ depends on the ${{\mathit X}^{0}}$-proton cross section.
18  Reanalysis of ANGLOHER 2009 data with all three nuclides. See also BROWN 2012.
19  See also APRILE 2014A.
20  AHMED 2011 search for ${{\mathit X}^{0}}$ inelastic scattering. See their Fig. $8 - 10$ for limits.
21  AHMED 2011A combine CDMS and EDELWEISS data.
22  APRILE 2011 reanalyze APRILE 2010 data.
23  Supersedes ARMENGAUD 2010. A limit on inelastic cross section is also given.
24  HORN 2011 perform detector calibration by neutrons. Earlier results are only marginally affected.
25  Superseded by AHMED 2010.
References