Cross-Section Limits for Dark Matter Particles (${{\mathit X}^{0}}$) on Nuclei

For ${\mathit m}_{{{\mathit X}^{0}}}$ = 100 GeV

INSPIRE   PDGID:
S030DM2
VALUE (nb) CL% DOCUMENT ID TECN  COMMENT
• • We do not use the following data for averages, fits, limits, etc. • •
$<3.3 \times 10^{-6}$ 90 1
APRILE
2021A
XE1T ${}^{129}\mathrm {Xe}$, inelastic
$<3 \times 10^{-3}$ 90 2
UCHIDA
2014
XMAS ${}^{129}\mathrm {Xe}$, inelastic
$<0.3$ 90 3
ANGLOHER
2002
CRES ${}^{}\mathrm {Al}$
4
BELLI
2002
RVUE
5
BERNABEI
2002C
DAMA
6
GREEN
2002
RVUE
7
ULLIO
2001
RVUE
8
BENOIT
2000
EDEL Ge
$<4 \times 10^{-3}$ 90 9
BERNABEI
2000D
${}^{129}\mathrm {Xe}$, inelastic
10
AMBROSIO
1999
MCRO
11
BRHLIK
1999
RVUE
$<8 \times 10^{-3}$ 95 12
KLIMENKO
1998
CNTR ${}^{73}\mathrm {Ge}$, inelastic
$<0.08$ 95 13
KLIMENKO
1998
CNTR ${}^{73}\mathrm {Ge}$, inelastic
$<4$
ALESSANDRELLO
1996
CNTR ${}^{}\mathrm {O}$
$<25$
ALESSANDRELLO
1996
CNTR ${}^{}\mathrm {Te}$
$<6 \times 10^{-3}$ 90 14
BELLI
1996
CNTR ${}^{129}\mathrm {Xe}$, inelastic
15
BELLI
1996C
CNTR ${}^{129}\mathrm {Xe}$
$<1 \times 10^{-3}$ 90 16
BERNABEI
1996
CNTR ${}^{}\mathrm {Na}$
$<0.3$ 90 16
BERNABEI
1996
CNTR ${}^{}\mathrm {I}$
$<0.7$ 95 17
SARSA
1996
CNTR ${}^{}\mathrm {Na}$
$<0.03$ 90 18
SMITH
1996
CNTR ${}^{}\mathrm {Na}$
$<0.8$ 90 18
SMITH
1996
CNTR ${}^{}\mathrm {I}$
$<0.35$ 95 19
GARCIA
1995
CNTR Natural ${}^{}\mathrm {Ge}$
$<0.6$ 95
QUENBY
1995
CNTR ${}^{}\mathrm {Na}$
$<3$ 95
QUENBY
1995
CNTR ${}^{}\mathrm {I}$
$<150$ 90 20
SNOWDEN-IFFT
1995
MICA ${}^{16}\mathrm {O}$
$<400$ 90 20
SNOWDEN-IFFT
1995
MICA ${}^{39}\mathrm {K}$
$<0.08$ 90 21
BECK
1994
CNTR ${}^{76}\mathrm {Ge}$
$<2.5$ 90
BACCI
1992
CNTR ${}^{}\mathrm {Na}$
$<3$ 90
BACCI
1992
CNTR ${}^{}\mathrm {I}$
$<0.9$ 90 22
REUSSER
1991
CNTR Natural ${}^{}\mathrm {Ge}$
$<0.7$ 95
CALDWELL
1988
CNTR Natural ${}^{}\mathrm {Ge}$
1  APRILE 2021A search for inelastic DM scatter off ${}^{129}\mathrm {Xe}$ nuclei with 0.83 t yr exposure. No signal obseved. Limits placed in ${{\mathit \sigma}}({{\mathit \chi}}{}^{}\mathrm {Xe}$) vs. m(DM) plane for WIMP mass between 20 GeV and 10 TeV.
2  UCHIDA 2014 limit is for inelastic scattering ${{\mathit X}^{0}}$ ${+}$ ${}^{129}\mathrm {Xe}^{*}$ $\rightarrow$ ${{\mathit X}^{0}}{+}$ ${}^{129}\mathrm {Xe}^{*}$(39.58 keV).
3  ANGLOHER 2002 limit is for spin-dependent WIMP-Aluminum cross section.
4  BELLI 2002 discuss dependence of the extracted WIMP cross section on the assumptions of the galactic halo structure.
5  BERNABEI 2002C analyze the DAMA data in the scenario in which ${{\mathit X}^{0}}$ scatters into a slightly heavier state as discussed by SMITH 2001.
6  GREEN 2002 discusses dependence of extracted WIMP cross section limits on the assumptions of the galactic halo structure.
7  ULLIO 2001 disfavor the possibility that the BERNABEI 1999 signal is due to spin-dependent WIMP coupling.
8  BENOIT 2000 find four event categories in Ge detectors and suggest that low-energy surface nuclear recoils can explain anomalous events reported by UKDMC and Saclay NaI experiments.
9  BERNABEI 2000D limit is for inelastic scattering ${{\mathit X}^{0}}$ ${}^{129}\mathrm {Xe}$ $\rightarrow$ ${{\mathit X}^{0}}{}^{129}\mathrm {Xe}$ (39.58 keV).
10  AMBROSIO 1999 search for upgoing muon events induced by neutrinos originating from WIMP annihilations in the Sun and Earth.
11  BRHLIK 1999 discuss the effect of astrophysical uncertainties on the WIMP interpretation of the BERNABEI 1999 signal.
12  KLIMENKO 1998 limit is for inelastic scattering ${{\mathit X}^{0}}$ $~{}^{73}\mathrm {Ge}$ $\rightarrow$ ${{\mathit X}^{0}}{}^{73}\mathrm {Ge}{}^{*}$ ($13.26$ keV).
13  KLIMENKO 1998 limit is for inelastic scattering ${{\mathit X}^{0}}$ $~{}^{73}\mathrm {Ge}$ $\rightarrow$ ${{\mathit X}^{0}}{}^{73}\mathrm {Ge}{}^{*}$ ($66.73$ keV).
14  BELLI 1996 limit for inelastic scattering ${{\mathit X}^{0}}$ ${}^{129}\mathrm {Xe}$ $\rightarrow$ ${{\mathit X}^{0}}{}^{129}\mathrm {Xe}^{*}(39.58$ keV).
15  BELLI 1996C use background subtraction and obtain $\sigma <0.35~$pb ($<0.15~$fb) (90$\%$ CL) for spin-dependent (independent) ${{\mathit X}^{0}}$-proton cross section. The confidence level is from R. Bernabei, private communication, May 20, 1999.
16  BERNABEI 1996 use pulse shape discrimination to enhance the possible signal. The limit here is from R.$~$Bernabei, private communication, September 19, 1997.
17  SARSA 1996 search for annual modulation of WIMP signal. See SARSA 1997 for details of the analysis. The limit here is from M.L.$~$Sarsa, private communication, May 26, 1997.
18  SMITH 1996 use pulse shape discrimination to enhance the possible signal. A dark matter density of $0.4~$GeV$~$cm${}^{-3}$ is assumed.
19  GARCIA 1995 limit is from the event rate. A weaker limit is obtained from searches for diurnal and annual modulation.
20  SNOWDEN-IFFT 1995 look for recoil tracks in an ancient mica crystal. Similar limits are also given for ${}^{27}\mathrm {Al}$ and ${}^{28}\mathrm {Si}$. See COLLAR 1996 and SNOWDEN-IFFT 1996 for discussion on potential backgrounds.
21  BECK 1994 uses enriched ${}^{76}\mathrm {Ge}$ (86$\%$ purity).
22  REUSSER 1991 limit here is changed from published ($0.3$) after reanalysis by authors. J.L.$~$Vuilleumier, private communication, March 29, 1996.
References